Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт определение в цирконии

    Определение кобальта в цирконии и его сплавах. Определение кобальта после отделения на анионите [1445]. Навеску 100 мг циркония растворяют в 20 мл смеси соляной и азотной кислот с добавлением 10 капель фтористоводородной кислоты (1 5). К раствору прибавляют для связывания ионов фтора 0,1 г хлорида алюминия и выпаривают большую часть раствора. К остатку добавляют 10 мл концентрированной соляной кислоты, упаривают раствор почти досуха и добавляют 20 мл 9 N раствора соляной кислоты. Раствор переносят в хроматографическую колонку, наполненную ионообменной смолой дауэкс [c.205]


    Аналогично определяют кобальт в цирконии. Определение кобальта в цирконии (и в титане) с использованием нитрозо-Н-со-ли см. также [1499]. [c.206]

    Определению циркония не мешает до 20% вольфрама, 15% хрома или кобальта и 10 о молибдена. Ванадий при содержании выше 0,5 0, железо (более 0,2%) и титан (выше 0,05%) мешают определению, но их влияние можно устранить промывкой органического экстракта 7 н. азотной кислотой. [c.202]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Исследуемую пробу смешивают с одной частью хлорида стронция и четырьмя частями графитового порошка, в который предварительно введено 2,5% окиси кобальта. Линии кобальта используют в качестве линий сравнения. Источником возбуждения спектров служит дуга постоянного тока (10а). Пробу помещают в канал угольного электрода, который служит катодом, и сжигают 3,5 мин. Аналитическая пара линий при определении циркония — 2г 3391,98— Со 2989,59. [c.173]

    Колориметрическое определение следовых количеств кобальта в цирконии и титане (металлических) с использованием электролиза с ртутным катодом. [c.204]

    Ход определения. Раствор, содержащий 8—36 мг циркония, приводят к pH 2—2,2 и разбавляют 0,01 н. раствором соляной кислоты до 50 мл. Прибавляют 2 капли индикатора и титруют при энергичном перемешивании 0,05 М раствором комплексона до перехода первоначальной пурпурно-розовой окраски в оранжево-красную. Переход окраски очень четкий даже при искусственном освещении. Приведенным способом можно определять цирконий в присутствии церия, лантана и урана. Определению циркония не мешают ртуть, свинец, никель, кобальт и ванадаты. Остальные катионы, согласно ориентировочным опытам автора, мешают. Также ведут себя анионы с комплексообразующими свойствами, затем сульфаты, вольфраматы, молибдаты. Трехвалентное железо перед титрованием циркония можно восстановить аскорбиновой кислотой. Но и в этом случае, если отношение Ре Zг превышает 2 1, проявится мешающее влияние двухвалентного железа (исчезнет окраска индикатора). [c.373]


    Измерения интенсивности люминесценции производят в прямоугольных кюветах емкостью 25 мл на флуориметре. Установку прибора на О производят по раствору, не содержащему хлорида алюминия и ионов фтора, на 100 — по раствору, не содержащему ионов фтора. Возможны измерения при содержании в 50 мл раствора от 0,2 до 100 мкг иона фтора. Ошибка колеблется в пределах 0,2—20% (в зависимости от содержания фтора в пробе). Мешают определению ионы хрома, железа, никеля, кобальта, бериллия, циркония, тория, кремния и фосфора. В их присутствии необходимо предварительно отогнать фтор в виде кремнефтористоводородной кислоты. [c.343]

    В.И. Экстракционное центрирование кобальта и циркония и их спектральное определение в сталях. - Вопросы судостроения", [c.179]

    Амперометрическому определению меди не мешают большие количества марганца, цинка, никеля, хрома, алюминия, молибдена, вольфрама, кобальта, магния, циркония, церия, а также небольшие количества олова, сурьмы, свинца, железа, золота. [c.38]

    Метод с использованием ализарина S нашел применение для определения циркония в магниевых [30, 42] и урановых [7, 43] сплавах, тории [44], титановых сплавах [451, сплавах кобальта [461 и никеля [47], платине [48], а также рудах и минералах [4, 5, 49]. [c.471]

    Определение циркония. К 200 мл раствора образца, содержащего цирконий в количестве, эквивалентном 30—40 мг двуокиси циркония, 0,5 н. по серной кислоте (во всяком случае, не более чем 4 н.) добавляют раствор реагента так, чтобы количество его было эквивалентно 1 г арсаниловой кислоты. Смесь нагревают с обратным холодильником в течение 10—15 мин, оставляют на 6 ч и фильтруют через бумажный фильтр. Осадок промывают тремя порциями (5 мл) 0,5 н. серной кислоты и 100 мл холодной воды (порциями), сушат при 120 °С и сжигают до двуокиси циркония никель, кобальт, алюминий, хром, цинк, марганец, медь и магний не мешают определению. Железо и титан мешают. Железо можно удалить экстракций диэтиловым эфиром из 6 н. раствора соляной кислоты. Для удаления титана окисляют его перекисью водорода до двуокиси титана в присутствии аммиака. [c.157]

    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Реактив используют для открытия и гравиметрического определения кобальта. Он образует с ионами кобальта, железа (III), меди, циркония и другими ионами малорастворимые соединения. При взаимодействии с солями кобальта(И) образуется интенсив- [c.204]

    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Применяют для фотометрического определения кальция и комплексометрических титрований кальция, никеля, кобальта и меди, а также для определения жесткости воды. Применяют для качественных определений стронция, циркония (IV), тория (IV) и РЗЭ. [c.175]

    При определении в аммиачной среде в присутствии винной кислоты и фторида калия титан, ниобий, тантал, вольфрам, алюминий, лантан анализу не мешают. При определении в кислой среде анализу не мешают алюминий, магний, цинк, кадмий, кобальт, свинец, РЗЭ при отношении их количеств к количеству молибдена не более 1 1. Ионы железа (III), циркония и гафния, образующие устойчивые комплексонаты в кислой среде, определению содержания молибдена мешают. [c.175]

    При цериметрическом окончании анализа можно определить около 3 мг кобальта в присутствии преобладающих количеств ионов трехвалентного железа, никеля, кадмия, цинка, меди, молибдена, ванадия и вольфрама (от 20 до 110 мг) с ошибкой менее 1%. Не мешают также катионы бериллия, свинца, марганца, хрома, алюминия, титана, циркония и других элементов, не образующих комплексов с 1,10-фенантролином, анионы хлора, азотной и серной кислот. Методика определения сводится к следующему. [c.118]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    В. А. Хадеев и Ф. Ф. Квашнина определяют цирконий прямым комплексонометрическим титрованием по анодному току комплексона III с танталовым электродом при +1,2 в (Нас. КЭ). Фоном служит 0,5—1,0 и. серная кислота, причем, по данным авторов этой работы, титрованию в таких условиях не мешают даже большие количества бериллия, урана, тория, цинка, кобальта, кадмия, молибдена, свинца и небольшие количества хрома, никеля, титана, церия (III) и ванадия (V). Алюминий мешает, но его связывают во фторидный комплекс. Однако следует помнить, что цирконий тоже образует прочные фторидные комплексы, почему и рекомендуется добавлять алюминий в присутствии фторида при определении циркония купфероновым методом. [c.355]

    К 2 мл анализируемого раствора прибавляют 0,2 мл конц. НС1 или 0,5 мл 2 N раствора СНзСООН и 2 капли 0,4%-ного водного раствора 4-сульфобензол-2-азохромотроповой кислоты. В присутствии циркония в сильнокислой среде раствор окрашивается в синий цвет, а в слабокислой — в голубой (контрольный раствор окрашен в малиновый цвет). Обнаруживаемый минимум и предельное разбавление в среде НС1 — 0,1 лг/жл 2г и 1 10 , в уксуснокислый среде — 2 мг/мл 2г и 1 500 соответственно. Предельные соотношения элементов следующие РеЗ+ (1 5) Сг (1 10) Се +, Ьа, Са (1 20) N1, Со, ТЬ, Ва, 8г (-1 40). При концентрации ]> 1 мг мл 2г его обнаружению в солянокислой среде мешает только кобальт. Реагент используют и для фотометрического определения циркония. [c.50]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    В настоящем сообщении мы постараемся на примерах окси-хинолинатов кобальта и циркония показать возможность применения радиоактивных изотопов для решения вопросов, связанных с определением состава продуктов осаждения циркония, изучением условий наиболее полного выделения меди и кобальта, исследованием характера соосаждения кобальта с 8-оксихинолинатом меди и полноты разделения этих элементов. [c.198]

    Реактив осаждает титан из минеральвокислых растворов (0,6 н. по соляной кислоте или 1,8 н. по серной кислоте). Определению титана не мешают алюминий, цинк, кобальт, никель, бериллий, хром (Ш), марганец, таллий, церий (Ш), торий, фосфаты, молибдаты, хроматы, ванадаты, уранил. Мешают определению цирконий, церий (1У), олово. Железо не мешает в присутствии роданида. [c.32]

    Арсоновые кислоты (арсоновая, фениларсоновая, п-оксифе-ниларсоновая, арсаниловая кислоты) образуют с четырехвалентными металлами IV группы Периодической системы нерастворимые в воде комплексы состава МАг. Состав осадков не строго стехиометричен, и поэтому их нельзя применять для непосредственного весового анализа. Обычно осадки сжигают до окислов металлов и взвешивают. Главное преимущество этих реагентов состоит в том, что их можно применять для избирательного определения циркония (IV), гафния (IV) и титана(IV) в присутствии многих других металлов, таких, как цинк, марганец, никель, кобальт, алюминий, медь, кальций, магний и хром. На практике их чаще всего применяют для определения циркония. [c.156]

    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Циркон (2-карбокси-2-окси-5-сульфоформазилбензол) [914]. Был применен как индикатор при комплексометрическом определении кобальта методом обратного титрования раствором сульфата цинка. [c.123]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Определение кобальта после отделения диэтилдитиокарбаминатом или его производными. Один из методов состоит в следующем [927]. 1 г циркония растворяют в 0 мл серной кислоты (1 1) с добавлением фтористоводородной кислоты (1 1). Избыток фтористоводородной кислоты удаляют выпариванием и растворяют остаток в соляной кислоте. К полученному раствору добавляют 20 мл 25%-ного раствора тартрата аммония, устанавливают pH около 3 и экстрагируют несколько раз смесью раствора пирролиди ндитиокарбамината аммония и хлороформного раствора дитизона до тех пор, пока окраска органического слоя не будет оставаться зеленой. Затем к водному слою прибавляют е N раствор гидроокиси аммония до pH 5,0 и повторяют ту же обработку, что и при pH 3, затем прибавляют 15 мл 25%-ного раствора тартрата аммония и экстрагируют таким же образом [c.205]


Смотреть страницы где упоминается термин Кобальт определение в цирконии: [c.402]    [c.180]    [c.68]    [c.192]    [c.31]    [c.180]    [c.96]    [c.104]    [c.317]    [c.362]    [c.366]    [c.373]    [c.52]    [c.204]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.46 , c.335 , c.337 , c.417 , c.420 , c.420 , c.463 , c.463 , c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение



© 2025 chem21.info Реклама на сайте