Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непрерывные явления

    Учитывая эти новые открытия, Планк и Эйнштейн создали квантовую теорию излучения, согласно которой свет — поток своеобразных корпускул (фотонов). По существу эти ученые предложили отказаться от метафизического представления о непрерывности явлений природы, в том числе и энергетических процессов. Ста- [c.156]

    Непрерывные явления заполняют исследуемый промежуток (конечный или бесконечный) таким образом, что разделить рассматриваемое явление на отдельные события, которые можно пронумеровать, не представляется возможным. [c.29]


    Существует определенная связь между дискретными и непрерывными явлениями. Они могут переходить одно в другое. Например, непрерывное явление можно рассматривать как предел, к которому стремится дискретное явление, если интервал между составными событиями стремится к нулю. И наоборот, дискретное явление можно представлять как непрерывное, рассматриваемое через конечные интервалы. Замена непрерывного сигнала дискретным называется квантованием. Непрерывный сигнал, представленный последовательностью дискретных значений, называется квантованным. [c.29]

    Далее Д. П. Коновалов отмечал, что во второй половине XIX в. устанавливается прочная связь между физикой и химией. На этой почве процессы химического превращения сближаются с процессами изменения физических свойств. Это сближение выражает возможность в обоих случаях наблюдать непрерывность явлений превращения. Зависимость превращений от внешних факторов можно подчинить в этом случае иногда одним и тем же законам, одинаково обязательным как для изучения физических свойств, так и для химических процессов. В этом случае фазы переменного состава одинаково принимаются в расчет при определении характера равновесия. В объединении явлений, относящихся к области физики и химии, по мнению Д. П. Коновалова, сыграло большую роль правило фаз Гиббса. Он отмечал, что известно немало веществ, по своим определенным свойствам приближающихся к химическим соединениям и в то же время имеющих иногда явные, иногда едва заметные признаки неоднородности. [c.74]

    Сырьевые теплообменники. Как отмечалось в гл. И1, неправильная обвязка сырьевых теплообменников, а также низкие скорости продуктов нарушают нормальную работу оборудования, приводят к аварийным ситуациям и снижают технико-экономические показатели работы установки. Так, в блоке предварительной гидроочистки беизина установки каталитического риформинга при подаче свежего газа 7700 м /ч наблюдались резкие непрерывные колебания температуры в реакторе (в пределах до 50 °С). При увеличении нодачи газа до 8800 м /ч эти явления устранялись. Рабочие условия в реакторе температура 350 С, давление 2,0 МПа. Температура газо-сырьевой смеси на выходе пз теплообменника составляла 200— 225 Т. В этих условпях в результате неправильной обвязки теплообменника, высокого парциального давления сырья и низких скоростей подачи сырья в межтрубном пространстве скапливалась жидкая фаза, периодический унос которой потоком газа в печь вызывал колебания температуры. Дополнительная подача свежего газа снижала парциальное давление сырья, сырье поступало в печь в паровой фазе, и колебания температуры исчезали. [c.138]


    В случае твердых частиц (см. раздел 8.4) условия поверхностной реакции можно рассматривать непосредственно, когда порядок величины % и диаметра пор одинаков. Однако это не значит, что величина Сд равна нулю. Различие в том, что жидкая фаза может реально рассматриваться как непрерывная, а пористое твердое тело как гомогенная фаза только по отношению к тому явлению, которое протекает в масштабе, превышающем порядок величин диаметров пор. [c.102]

    Квантовый характер излучения и поглощения энергии. Примерно в начале XX в. исследования ряда явлений (излучение раскаленных тел, фотоэффект, атомные спектры) привели к выводу, о энергия распространяется и передается, поглощается и испускается не непрерывно, а дискретно, отдельными порциями — квантами. Энергия системы микрочастиц также может принимать только определенные значения, которые являются кратными числами квантов. Таким образом, энергия этих систем может изменяться лишь скачкообразно или, как говорят, она квантуется. [c.10]

    Г.К. Боресковым установлено исключительно важное для теории и практики гетерогенного катализа явление изменения энергии активации реакции, а также энергии связи кислорода окисла в зависимости от степени окисления катализатора. Было обнаружено, что по мере удаления кислорода из окислов металлов энергия активации реакций их восстановления непрерывно возрастает. Это указывает на то, чт) поверхность катализатора неоднородна в отношении хемосорбции окислителя, [c.160]

    Ввиду того что для обеспечения устойчивой капельной конденсации на поверхность теплообмена нужно непрерывно подавать смазывающее вещество, которое к тому же загрязняет эту поверхность, промышленного применения этот способ организации капельной конденсации не нашел. На практике встречаются в лучшем случае явления смешанной конденсации этим и объясняется та производительность конденсаторов, которая намного превышает значения, получаемые согласно теории конденсатной пленки. Интересно, что в опытах, проведенных до настоящего времени, наиболее трудным оказалось получение капельной конденсации на алюминиевых и стальных трубках, в отличие от трубок из хромоникелевой стали, на поверхности которых капельная конденсация может быть достигнута легче. [c.94]

    При пуске в ход или остановке непрерывного и стационарного производства возникают нестационарные явления. [c.302]

    Медленные нестационарные явления в конечном результате приводят к нарушению непрерывности производства оборудование останавливают для удаления загрязнений, регенерирования катализатора и т. д. Отсюда следует необходимость устранения причин, вызывающих медленные нестационарные процессы. [c.311]

    В этих условиях волна давления, выходящая из пламени и распространяющаяся со скоростью звука, непрерывно усиливается. Впереди реакционной зоны создается область очень резких изменений давления, плотности и температуры. Эта область в несгоревших газах движется со скоростью, превышающей скорость звука. Такое явление называется ударной волной. Если же оно начинается и сопровождается взрывом, то такое явление называется детонационной волной. [c.405]

    Практически наиболее важное в проблеме детонации — то, что с течением времени для двигателей требуются все более и более высокооктановые топлива, чтобы предотвращать детонационные явления. Необходимо иметь в виду, что жесткость эксплуатационных характеристик двигателей непрерывно усиливается, а запасы высокооктановых топлив, напротив, сокращаются. [c.414]

    При большом количестве циркулирующей реакционной массы сильно уменьшается непосредственное влияние изменения скорости подачи реагентов. Это, однако, временное явление, и в условиях непрерывной работы при другой скорости в конце концов наступает полная компенсация возмущения. [c.91]

    Явления релаксации и ползучести различаются тем, что при релаксации общая деформация детали постоянна, а напряжение в ней падает, в то время как при ползучести напряжение постоянно при непрерывно нарастающей деформации. [c.11]

    Быстрое развитие и растущее значение физической химии связаны с ее пограничным положением между физикой и химией. Физическая химия, как пограничная наука, охватывает изучаемые ею явления с нескольких сторон, учитывая диалектический характер их взаимосвязи и взаимодействия, и таким путем познает сложные и взаимосвязанные явления материального мира. Аналогичными физической химии в этом отношении являются такие пограничные и быстро развивающиеся области естествознания, как биохимия и биофизика, геохимия и геофизика, астрофизика, значение которых непрерывно возрастает. Связь и взаимодействие этих наук с физической химией также велики. [c.12]

    В ходе химической реакции непрерывно убывает число активных молекул, превращающихся в продукты реакции. Если скорость реакции значительно меньше скорости молекулярнокинетической активации, относительное число активных молекул будет сохраняться постоянным и максвелл-больцмановское распределение не будет искажено. Если же реакция протекает достаточно быстро и скорость ее сравнима со скоростью активации, относительное число активных частиц будет убывать, т. е. будет происходить так называемое выгорание активных частиц. Это явление имеет большое значение для интерпретации быстрых процессов — взрывных и разветвленных цепных. [c.130]


    Химические изменения всегда сопровождаются изменениями физическими. Поэтому химия тесно связана с физикой. Химия также связана и с биологией, поскольку биологические процессы сопровождаются непрерывными химическими превращениями. Однако химические явления не сводятся к физическим процессам, а биологические — к химическим и физическим каждая форма движения материи имеет свои особенности. [c.15]

    Явления полимеризации протекают непрерывно нри переработке нефти. При нагревании углеводородов, они полимеризуются непосред- [c.97]

    В самом деле, при этом протекают различные процессы полимеризации, ведущие к непрерывному увеличению вязкости. Эти явления обусловливаются а) попеременным нагреванием и охлаждением испытываемым растворителем б) каталитическим действием некоторых примесей, содержащихся в газе, а именно примесей кислородсодержащих и сернистых соединений в) наконец аккумуляцией [c.142]

    Теоретическое значение вопроса о происхождении нефти состоит в том, что правильное его разрешение дает нам истинное представление о протекавших в земной коре процессах, в результате которых возникла нефть, как минеральное тело, и образовались в конечном счете ее залежи оно удовлетворяет нашему стремлению к познанию природы и установлению закономерной связи между происходящими в ней явлениями в процессе их непрерывного развития, знакомит нас на конкретном примере с одной из струй единого великого потока диалектического развития природы и устраняет, таким образом, ряд ложных представлений, имеющих порою характер фантастических выдумок. [c.299]

    Отравление катализатора. Катализатор может загрязняться в результате непрерывного образования на его поверхности осадка, снижающего активность. Для учета этого явления в уравнениях скорости реакции можно предположить, что появление яда приводит к уменьшению количества активных центров. Тогда [c.121]

    Пузыри находятся в движении, так что поток не является установившимся относительно неподвижного наблюдателя (или стенок аппарата). Если скорость пузыря превышает скорость движения газа в просветах невозмущенной непрерывной фазы, то возникает интересное и важное явление. Поле давлений заставляет газ входить в пузырь через дно. Выйдя через его крышу, газ поступает в непрерывную фазу, быстро текущую вниз вдоль боковой поверхности пузыря газ увлекается ею к основанию пузыря и снизу снова входит в пего. В результате возникает сферический вихрь газа (концентричный пузырю), который поднимается вместе с пузырем как обособленное газовое образование (облако циркуляции). Наличие этого облака значительно изменяет время контакта газа и твердых частиц, являясь важной причиной проскока газа через слой. [c.157]

    В соответствии с представлениями квантовой теории при взаимодействии излучения и вещества (например, при поглощении или испускании света) передача энергии происходит не непрерывно во времени, а прерывисто, отдельными целыми порциями-квантами лучистой энергии (их называют также световыми квантами и фотонами). Величина этих квантов пропорциональна частоте света у секг и равна /г-у, где к — универсальная постоянная Планка. Энергия световых квантов крайне мала (например, обычная электрическая лампочка излучает примерно 10 квантов в секунду), поэтому человеческий глаз не в состоянии ощутить мелькание отдельных квантов и воспринимает свет как непрерывное явление [38, 57]. ( Ощутимость глазом квантовой природы света возможна лишь при наблюдении в специальных условиях крайне слабых световых потоков, лежащих у порога зрительного восприятия [9]). Таким образом, волновые свойства света представляют собой статистическое явление, возникающее в результате суммированного воздействия громадного числа ничтожно малых световых квантов. [c.8]

    Учитывая эти новые открытия, Планк и Эйнштейн со.здали квантовую теорию излучения, согласно которой свет — поток своеобразных корпускул (фотонов). По существу эти ученые предложили отказаться от метафизического представления о непрерывности явлений природы, в том число и энергетических процессов. Старому тезису классической физики природа не делает скачков они противопоставили антитезис, согласно которому энергия, несомая светом, может изменяться (поглощаться либо излучаться) не непрерывным потоком, а определенными порциями — квантами. Тем самым представления о дискретном (зернистом) строении вещества были распространены на энергетические процессы. [c.153]

    Характерная особенность капельного электрода заключается в том, что его поверхность непрерывно обновляется. Вследствие этого он постоянно обладает одними и теми же свойствами, так как на каждой новой капле повторяются те же явления, что и на предыдущей. Свойства анода постепенно (хотя и очень медленно) изменяются по мере накопле-ння в нем капель ртути с вьще-ливщимся на них из раствора металлом. [c.454]

    Второй эффект, принятый во внимание Уэббом, связан с явлением электрострикции, т, е, сжатия, наблюдаемого при растворении, В результате электрострикции объем раствора становится меньше, чем сумма объемов чистого растворителя и растворенного вещества. На процесс сжатия расходуется некоторое количество энергии. Учет обоих эффектов приводит к тому, что величины энергий и теплот гидратации, вычисленные по формуле Борна — Уэбба, уменьшаются и приближаются к опытным, В теории Уэбба растворитель по-прежнему рассматривается ка ч непрерывная среда и не учитывается ни строение его молекул, пн структура жидкости. [c.56]

    Вссьма полезным для решения части этих задач оказалось привлечение к рассмотрению явлений электропроводноетн теории абсолютных скоростеу реакций и кинетической теории жидкого состояния. Эти теории рассматривают перемещение ионов не как непрерывное движение ионов в вязкой среде, а как последовательную серию скачков из одного промежуточного состояния равновесия в [c.128]

    Интересен также анализ массопередачн с химической реакцией, когда скорость суммарного явления стадий 2—4 лимитирует процесс. Поэтому в книге главным образом проводится анализ взаимного влияния этих трех стадий, которые протекают совместно в фазе 2 под действием общей движущей силы, обусловленной тем, что один или несколько реагентов непрерывно переносятся из фазы 2 в фазу 1. Предполагается, что в любом случае вклад явления массопереноса в общее сопротивление массопереноса в пределах фазы 1 учитывается отдельно. [c.13]

    Когда в реактор непрерывно поступает поток реагентов и в то же время непрерывно отводится поток продуктов реакции, на чистый поток может накладываться явление перемешивания вещества в направлении движения последнего. Общая конверсия, которая может быть получена в данном реакторе при закрепленных условиях питания, сильно зависит от вклада продольного перемешивания в пределах собственно реактора. В самом широком смысле явление продольного перемешивания — это процесс массопереноса. Таким образом, исследование продольного перемешивания в химическом реакторе относится к области массопередачн с химической реакцией. [c.120]

    Итак, в процессе испарения жидкой двухслойной начальной системы происходит разделение жидкого слоя Л, состава ха, на две части паровую, состава е, более богатую компонентом а, и жидкую, состава хв, менее богатую компонентом а, чем поглощающийся слой А. Не вдаваясь глубже в механизм провсходящего явления, для целей установления закономерностей процесса перегонки двухслойной жидкости неэвтектического типа, вполне достаточно представлять испарение в этой системе, как прогрессивное поглощение жидкой фазы Л, вследствие ее непрерывного разделения на пар состава уе и жидкость состава Хв, присоединяющуюся к жидкой фазе В. [c.53]

    Волны, описываемые уравнением (2.125), обычно называют кинематическими [173]. Уоллис [94] предложил называть их волнами непрерывности (сплошности). Оба названия взаимно дополняют друг друга и отражают наиболее характерные особенности этих волн. Второе название указывает на то, что волны переносят некоторое непрерывное распределение вещества или состояния среды. Первое название введено для того, чтобы показать, что эти волны не связаны с динамическими эффектами, т. е. не определяются взаимодействием сил, как, скажем, звуковые волны в газах или гравитационные волны на поверхности жвдкости. Начало использованию теории кинематических волн для анализа нe тaц oнapныx явлений в дисперсных двухфазных потоках было положено в работах [94, 140, 174]. Наблюдение кинематических волн в пузырьковых потоках проводилось в работе [175]. [c.116]

    О химической и физических формах движеиия материи (о химических и физических явлениях) часто говорят та1 , как будто эти различные формы движения (различные явления) всегда легко определять и различать при изучении сложных их сочетаний. На самом же деле встречаются и такие процессы и явления, которые по своему существу являются промежуточными между химическими и молекулярно-физическими. Отдельные изтаких явлений можно расположить в непрерывный ряд от чисто молекулярно-физических к чисто химическим. Таковы взаимодействия составных частей в растворах и взаимодействие адсорбированного вещества с веществом адсорбента. Очевидно, для этих групп явлений характерны формы движения материи, переходные от физических к химической. Такие явления, естественно, в первую очередь должны считаться объектами изучения физической химии. [c.11]

    Сам Планк долгое время полагал, что испускаЕ1ие и поглош,е-ние света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглош,ать-ся непрерывно. Однако в 1905 г. А. Эйи-штейи, анализируя явление фотоэлек-) трического эффекта, пришел к [c.64]

    Наконец, движение электронов в атомах, а также колебание ядер, и связанное с этим непрерывное изменение взаимного положения электронов и ядер вызывает появление мгновенных диполей. Как показывает квантовая механика, мгновенные диполи возникают в твердых телах и жидкостях согласованно, причем ближайшие друг к другу участки соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притям<ению. Это явление, называемое дисперсионным взаимодействием, имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обусловливает переход благородных газов при низких температурах в жидкое состояние. [c.158]

    Адсорбция сопровождается выделением тепла. Теплота адсорбции при расчете на 1 з адсорбента приблизительно пропорциональна величине адсорбции, поэтому она может служить относительной мерой адсорбционной способности пористых адсорбентов. Так как адсорбция есть поверхностное явление, то чем больше общая поверхность адсорбента, тем больше молекул он может поглотить. Поэтому порпстые и порошкообразные адсорбенты обладают большой адсорбционной (поглотительной) способностью. Адсорбционная характеристика пористых адсорбентов выражается равновесной статической п динамической активностью. Равновесная статическая активность — это число молекул вещества, поглощенных адсорбентом при наступлении адсорбционного равновесия она характеризует обычно процессы периодической адсорбции. Динамическая активность — число молекул, поглощенных поверхностью адсорбента при движении вещества через слой адсорбента она характеризует процессы непрерывной адсорбции. [c.24]

    Утверждение, что в такой системе обычно устанавливается не зависящий от времени режим справедливо, разумеется, лишь при условии постоянства подвода реагентов, постоянства скоростей отвода тепла и т. д. Однако и в этих условиях процесс не обязательно приближается к стационар ному. В ряде случаев может оказаться, что концентрации различных веществ, присутствующих в системе, будут непрерывно колебаться около некоторых средних значений. Это может происходить при сложных автокаталитическнх реа1кциях, в том числе ферментативных [8], а та1кже при реакциях с особым температурным режимом. Существование такого рода явлений было обнаружено при не- [c.22]

    Теория одноступенчатой кристаллизации была предложена Брэнсомом, Даннингом и Миллардом [13]. Ими было достигнуто удовлетворительное совпадение теоретически найденного распределения с экспериментальными данными, полученными при использовании небольшого лабораторного кристаллизатора непрерывного действия. Диапазон изменения размеров кристаллов оказался шире, чем при соответствующей кристаллизации в реакторе периодического действия. Этого, по-видимому, и следовало ожидать вследствие явления проскока. В годы войны автор настоящей работы и его сотрудники получили аналогичные результаты при проведении исследования роста кристаллов цик-лонита (Н. О. X.) в кристаллизаторе промышленного типа. Эти результаты опубликованы не были. [c.118]

    В шестидесятых годах стало очевидным, что эксплуатационные свойства топлив ТС-1 и Т-1 не могут в полной мере отвечать все возрастающим требованиям авиационной техники. Характерная черта развития авиатехники — непрерывное повышение температур топлива в топливных системах летательных аппаратов, что связано с повышением теплонапряженности авиадвигателей и скоростей полета. Увеличение теплонапряженности двигателей, обусловленное повышением температур воздуха за компрессором и газа перед турбиной — закономерный процесс, без которого невозможно улучшение их экономичности, тяговых и весовых характеристик. Чем выше теплонапряженность двигателя, тем больше отдача тепла от двигателя в топливо. При-мертъи уровень температур топлива в баках и агрегатах некоторых типов дозвуковых и сверхзвуковых самолетов показан на рис. 1.1. Если при дозвуковом полете топливо ахлаждается в баках самолета, то при сверхзвуковом полете происходит обратное явление вследствие аэродинамического нагрева конструкции летательного аппарата. Чем больше скорость и длительность сверхзвукового полета, тем выше температура топлива в элементах топливной системы самолета. Температура топлива в агрегатах двигателей некоторых сверхзвуковых самолетов в настоящее время достигает 200 °С и выше. [c.13]

    На фото 1У-25 показаны последовательные стадии движения пузыря, подобно приведенным на фото 1У-16, но для мелких частиц катализатора крекинга нефти (со средним диаметром около 60 мкм). Как и предполагалось, налицо дрейф, однако профпль сильно искажен из-за нестабильности непрерывной фазы. Это нетрудно объяснить качественно так как слой несколько расширен, то появляется возможность перемещения частиц. Такое предположение подтверждается данными фото 1У-26, где представлены фотоснимки двухмерного слоя, сильно освещенного сзади при этом свет частично проникает в непрерывную фазу. Первый снимок относится к слою твердых частиц размером около 83 мкм, непрерывная фаза в этом случае почти не расширена и выглядит как однородное серое поле между пузырями. Второй снимок демонстрирует слой, содержащий частицы размером около 60 мкм этот слой перед возникновением пузырей расширяется на несколько процентов. Непрерывная фаза на снимке кажется неоднородной, указывая на образование отдельных агрегатов частиц, способных в ограниченной степени перемещаться друг относительно. друга. Это явление не приводит к большим различиям в степени перемешивания твердых частиц, но несколько изменяет описанную ранее картину. [c.156]

    На каждой из представленных фотографий ниже подпима-юш егося пузыря виден след газа-трасера. Значит, обе части газа в облаке и между твердыми частицами в непрерывной фазе) изолированы не полностью, и между ними происходит некоторый газообмен. Это можно понять, если перенос через границу раздела осуществляется за счет молекулярной диффузии. До настоящего времени скорость газообмена исследована мало . Это явление сходно с массопередачей от капли (или к капле) какой-либо жидкости, поднимающейся в другой жидкости, не смешивающейся с первой. В таком случае скорость обмена должна быть [c.164]


Смотреть страницы где упоминается термин Непрерывные явления: [c.316]    [c.318]    [c.275]    [c.352]    [c.306]    [c.555]   
Методы кибернетики в химии и химической технологии (1985) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте