Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос энергии волнами

    Широков Л. 7-22] рассматривает теплопроводность как процесс переноса энергии волнами. Он интегрирует поступательные и колебательные движения молекул, [c.297]

    Легко убедиться, что поток энергии в направлении движения волн дол жен быть больше, чем поток энергии в противоположном направлении. Обычно, говоря о переносе энергии волнами, учитывают поток энергии,, осредненный за один период волн. [c.242]


Рис. 126. Пояснение переноса энергии волнами Рис. 126. Пояснение <a href="/info/3022">переноса энергии</a> волнами
    Значит, и на резко мелководном море береговой эффект продвигается от наветренного берега в открытое море с групповой скоростью — с той скоростью, с какой происходит перенос энергии волнами. [c.321]

    Световые лучи имеют длину волны 0,4—0,8 мк тепловые лучи имеют длину волны, равную 0,8—40 мк (1 мк = 10 мм). Таким образом, доля светового лучеиспускания является, например, при 1500° К только небольшой частицей общего лучеиспускания. Поэтому учет энергии видимого. излучения при температурах, которые встречаются в топках промышленных устройств, имеет второстепенное значение. Определяющим в этих случаях является перенос энергии инфракрасными лучами. Это обстоятельство очень важно при определении лучеиспускания несветящегося пламени. [c.130]

    Для систем произвольной конфигурации от дифференциальных уравнений переноса переходят к интегральным [5]. Вывод интегральных уравнений излучения, описывающих перенос излучения в поглощающих средах, сводится к совместному рассмотрению всех видов излучения и решению уравнения переноса для интенсивности Д. (М, 5) из уравнения (5.10). Объемный характер теплообмена излучением в поглощающих средах зависит от молекулярных свойств среды. Для чистых газов излучение и поглощение носит четко выраженный селективный характер, их спектр является полосатым. Поэтому при выборе необходимого воздействия требуется знание спектральных характеристик оптических констант веществ. Задачи, связанные с переносом энергии в аэродисперсных системах, требуют анализа дисперсного состава твердой или жидкой фазы и учета индикатрис их рассеяния в зависимости от длины волны. [c.95]

    Передача тепла лучеиспусканием происходит путем переноса энергии в виде электромагнитных волн. В этом случае тепловая энергия превращается в лучистую энергию (излучение), которая проходит через пространство и затем снова превращается в тепловую при поглощении энергии другим телом (поглощение). [c.364]


    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Бензофенон — нафталин. При импульсном облучении бензо-фенона в присутствии нафталина происходит триплет — триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизии мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и образуют кетильный радикал (Я, = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет — триплетное поглощение нафталина (Я=412 нм). Используя величину е для кетильных радикалов (3220 л моль - ом- ), можно по уменьшению оптической плотности на длине волны 545 нм и по оптической плотности триплет — триплетного поглощения нафталина определить коэффициент экстинкции для нафталина  [c.192]

    Передача тепла излучением происходит в результате переноса энергии от одного тела к другому в виде электромагнитных волн. [c.444]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Смещение пучка А тем больше, чем ближе угол падения р к критическому значению. Поэтому данное явление можно рассматривать как перенос энергии вдоль поверхности неоднородной волной. Чем ближе угол р к критическому значению, тем больше амплитуда неоднородной волны на заданной глубине, тем больше рас-, стояние она пробегает вдоль поверхности. [c.38]

    Перенос энергии вдоль поверхности хорошо интерпретируется с точки зрения принципа Ферма. Этот принцип состоит в том, что волновой процесс распространяется от одной точки к другой по линии, вдоль которой время его прохождения экстремально. Чаще всего —это минимальное время. Из принципа Ферма можно получить все законы распространения, отражения и преломления волн. Например, при преломлении на границе вода — сталь звук идет таким образом, чтобы путь в воде (где скорость меньше) был короче, а в стали — длиннее. [c.38]

    Изучение более близкого к реальному случая падения на границу раздела звукового импульса и учет затухания звука в слое показывают, что осцилляции коэффициентов отражения и прохождения уменьшаются по мере роста ЛДс- Это объясняется уменьшением амплитуды колебаний интерферирующих волн по мере увеличения h. При наклонном падении на границу волны с ограниченным фронтом (пучка лучей) амплитуда интерферирующей волны в слое еще быстрее ослабевает в результате переноса энергии вдоль слоя, т. е. ухода из пучка. Отсюда следует, что для оптимального просветления границы следует брать наиболее тонкий просветляющий слой Лс=Яс/4 при нормальном или /i=X /(4 os а) при наклонном падении. [c.45]


    Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной (2а//г), где а — постоянная решетки, будут находиться в кристалле в условиях замкнутого отражения и не способны переносить энергию. [c.83]

    Спектральную сенсибилизацию эмульсий галогенидов серебра можно достичь с помощью адсорбции подходящих красителей на зерна галогенидов. Такая сенсибилизация важна потому, что позволяет формирование изображения под действием излучения с большими длинами волн, чем эффективные для несенсибилизированных эмульсий (выше сине-зеленой границы, которая в случае эмульсии на основе иодида серебра находится примерно при 490 нм). Кроме того, она дает превосходный пример реакции, сенсибилизируемой переносом энергии или электронов. Действительно, спектральная сенсибилизация фотоэмульсий, по-видимому, была первым осознанным случаем фотосенсибилизации (1873 г.). [c.250]

    При использовании маловязких растворителей необходимо удалить кислород из раствора. При использовании глицериновых растворов или полиэтиленгликоля можно работать в присутствии воздуха. Практически задача выполняется следующим образом. Готовят раствор нафталина (10 М), который разбавляют растворителем в 40 раз с различным содержанием антрацена — 10 М. Регистрируют кинетику триплет-триплетного поглощения на длине волн 425 нм (для антрацена) и 412 нм (для нафталина). Облучение раствора проводят через светофильтры УФС-2 и ЖС-3, которые не пропускают свет с длиной волны, поглощаемой антраценом. Определяют константу скорости триплет-триплетного переноса энергии. [c.318]

    М. А. Михеев [Л. В-1] характеризует указанные три элементарных вида теплообмена следующим образом Явление теплопроводности, или кондукции, состоит в том, что обмен энергии происходит путем непосредственного соприкосновения между частицами тела. При этом в жидкостях и твердых телах (диэлектриках) перенос энергии осуществляется путем упругих волн, в газах — путем диффузии атомов или молекул, а в металлах — путем диффузии электронов. [c.7]

    Известно, что распространение нормальных волн характеризуется рядом особенностей [211. В импульсных дефектоскопах скорость распространения группы волн (импульса) является групповой скоростью, определяющей скорость переноса энергии. В продольных и поперечных волнах все составляющие распространяются с одной и той же скоростью, а скорость распространения импульса (группы волн) равна фазовой скорости. Нормальные волны обладают дисперсией, скорость распространения импульса определяется интерференцией всех составляющих спектра импульса, каждая из которых распространяется со своей фазовой скоростью, определяемой ее частотой. [c.7]

    Инверсную заселенность можно получить также в химических реакциях, в которых продукты реакции находятся в возбужденном состоянии. В химическом лазере энергия лазерного излучения создается в результате химической реакции. Например, струю газа, содержащего атомы фтора, можно смешать с дейтерием (или водородом) и двуокисью углерода, вызывающей цепную реакцию, в которой образуется колебательно-возбужденный фтористый дейтерий (или фтористый водород). Колебательно-вращательная энергия возбужденной молекулы DF накачивается на верхний уровень лазера на СОг с помощью межмолекулярного процесса переноса энергии. Получающийся таким образом лазер на СО2 непрерывного действия с длиной волны 10,6 мкм может полностью обеспечиваться химическими источниками, если атомы фтора образуются по реакции типа [c.558]

    В [2.12] проведен анализ распространения каналирования электромагнитных волн по поверхности сопряжения разнородных электронных континуумов (граница раздела фаз). На базе уравнений Максвелла онисаны электродинамические свойства щели, образованной границей сопряжения в функции топологического распределения феноменологических коэффициентов. Для ряда параметров получены аномальные коэффициенты переноса энергии электромагнитного поля. [c.80]

    При переносе энергии на молекулу, которая не способна поглощать квантов лучистой энергии, используют фотосенсибилизаторы, например пары ртути. Пары ртути при облучении светом с длиной волны 254 нм переходят в возбужденное состояние. Возбужденный атом ртути может оторвать атом водорода от молекулы водорода или алкана  [c.219]

    Диссипативная структура — это особое состояние сильно неравновесной системы. В таких системах происходит интенсивный перенос энергии, сопровождающийся ее потерями. Это может быть перенос теплоты от нагретого тела к холодному через слой жидкости или передача механической энергии одного движущегося тела другому через слой жидкости или самой жидкой среде. Это может быть также химическая реакция или передача энергии переменного поля частицам феррита и т. д. Течение этих процессов может принимать своеобразный, регулярный характер. Предпочтительность регулярного течения процесса обусловлена тем, что при прочих равных условиях (например разности температур) скорость переноса энергии увеличивается за счет включения дополнительных механизмов переноса. Классический пример диссипативной структуры — регулярные ячейки конвективных потоков среды при теплопередаче, если нагретое тело расположено внизу, а холодное — вверху. В этом случае теплопередача интенсифицируется за счет конвективного переноса теплоты в дополнение к нормальной теплопередаче неподвижной теплопроводной средой. Обычные волны на поверхности воды служат другим примером диссипативной структуры. Здесь, наряду с пространственной регулярностью возмущений поверхности, возникает и регулярность изменения состояния поверхности во времени. Пример чисто временной регулярности дают некоторые колебательные химические реакции. Внешне периодичность реакции может проявлять себя в том, что цвет раствора периодически с частотой несколько раз в минуту изменяется, например, с красного на синий и обратно. Такие колебания продолжаются до окончания реакции, длящейся десятки минут. [c.680]

    Волну, фронт которой перемещается с постоянной скоростью (в случае однородной среды), называют бегущей. Она вызывает перенос энергии. Две одинаковые бегущие волны, распространяющиеся в противоположных направлениях, образуют стоячую волну - периодическое во времени колебание с чередованием в пространстве узлов (нулей) и пучностей (максимумов) амплитуды. В ней перенос энергии не происходит. Стоячая волна соответствует условиям установления собственных колебаний в объекте. Если амплитуды встречных волн неодинаковы, возникает частично бегущая волна. [c.20]

    При малых значениях ЯД выражение зЬ2б приближается к 26 и Сп, стремится к фазовой скорости с, что справедливо для приливных волн, длина которых значительно превосходит глубину моря. Групповая скорость волн определяет скорость переноса энергии волн и входит в уравнение баланса энергии. [c.118]

    Из других видов энергии в процессах тонкого химического-синтеза представляют интерес перенос оптического излучения,, энергии акустических колебаний, ионизирующего излучения. Процесс переноса оптического излучения происходит в фото-физических и фотохимических процессах, перенос энергии акустических волн — в звукохимических процессах и при перемешивании при помощи ультразвуковых колебаний, ионизирующего излучения — радиационно-химпческих процессах. [c.17]

    Для многих технических целей поверхности с большой точностью могут рассматриваться как серые. Но свойства многих поверхностей отклоняются от описанных выше для различных длин волн вследствие резонансных эффектов, которые аналогичны явлениям, связанным с полосами излучения в газе. Кроме того, излучательная способность меняется в зависимости от направления излучения. По. этой причине приходится иногда определять интегральную излучательную способность (все направления, все длины волн), нормальную полную излучательную способность (все длины волн, но только нормальное к поверхности направление) и монохроматическую, или спектральную, иа-лучательную способность (ej, для данной длины волны). На рис. 2 представлены типичные зависимости излучательной способности от длины волны. Взаимодействие между тепловыми колебаниями и фотонами не зависит от направления переноса энергии, т. е. любой процесс, приводящий к излучениЕо электромагнитной волны, может протекать и в противоположном направлении, приводя к поглощению точно такой же волны. По этой причине все излучение, падающее на абсолютно черное тело, будет им поглощаться. Реальные поверхности, однако, поглощают лишь часть падающего на них излучения, отражая остальное, причем отношение поглощенной энергии к полной падающей энергии Е( определяется как поглощательная способность a- EJEf [c.193]

    Резонансное взаимодействие обнаружено при передаче энергии от флуоресцирующей молекулы к молекуле тушителя. Если молекула тушителя поглощает при более длинных волнах, чем флуоресцирующая, то передача энергии может происходить на значительно больших расстояниях, чем радиус столкновения. Расстояние, на котором осуществляется перенос энергии, для систем антрацен—перилен, перилен—рубрен достигает 50—100 А. Такой резонансный перенос приписывают дальнодействую-щему диполь—дипольному взаимодействию. Резонансный перенос энергии может наблюдаться не только для электромагнитного, но и для акустического поля (М. Волькен-штейн). [c.96]

    Перенос энергии в волноводе в виде электромагнитного поля можно об7)Ясиить -как отражение волны этого поля от очень хорошо проводящих внутренних стенок волновода с образованием бегущей волны. В результате на поверхности стенок волновода индуктируется переменный ток СВЧ. В том случае, если отражающая поверхность является идеально проводящей, то при отражении энергетические потери будут минимальны. [c.279]

    Запасание и использование солнечного излучения зависит от наличия в растениях хлорофилла. На рис. 8.7 показана структурная формула наиболее широко распространенного хлорофилла о. Резонанс сопряженной системы приводит к оптическому поглощению в видимой области спектра на длинах волн, соответствующих максимальной солнечной интенсивности на уровне моря. В то же время свойственная порфнриновой структуре стабильность гарантирует, что поглощение излучения будет сопровождаться процессами переноса энергии или излучения, а не диссоциацией хлорофилла. Хлорофилл является особо эффективным сенсибилизатором благодаря способности поглощать энергию света и передавать ее от одной молекулы к другой до тех пор, пока не появятся условия, подходящие для сенсибилизируемой реакции. В органических растворах выход флуоресценции составляет примерно 0,3 (хотя в естественных условиях он значительно меньше), что является дополнительным свидетельством стабильности молекулы. [c.230]

    Различают три вида теплообмена теплопроводность, конвекцию и тепловое излучение. Теплопроводностью называется явление переноса тепла путем непосредственного соприкосновения между частицами с различной температурой. К этому виду относится передача тепла в твердых телах, например, через стенку аппарата. Конвекцией называется явление переноса тепла путем иеремеш,епия частиц жидкости или газа и перемешивания их между собой. Теплообмен может осуществляться также посредством лучеиспускания — переноса энергии подобно свету в виде электромагнитных волн. [c.25]

    Однако супрамолекулярная химия при всех своих волнующих перспективах и животрепещущей увлекательности лежит за пределами темы нашей книги. Адресуем читателя к более специализированной литературе по этому предмету [Ъ2%, 33а, 38а,о]. Тем не менее, поскольку уж мы затронули базовые концепции и синтетическую стратегию этой области, перечислим в заключение основные проблемы, с которыми она сейчас имеет дело [38о]. Это устройства молекулярной фотоники, способные оперировать в режиме поглощение световой энергии/перенос энергии/излучение, свет/электрон или свет/ион устройства молекулярной электроники, сконструированные как молекулярные провода и переключатели, чувствительные к окислительновосстановительным или световым сигналам молекулярно-ионные устройства, способные образовывать трубки, монослои или грозди трубок, каналы для ионного транспорта программируемые молекулярные системы, способные к самосборке и, в конечном счете, к самоорганизации в форме, определяемой элементами молекулярного узнавания создание супрамолекулярных систем селективного узнавания субстратов, способных проводить требуемые химические трансформации с эффективностью и селективностью, свойственными ферментативному катализу. Как указывал Лен [38о], общей нитью всех областей супрамолекулярной химии является информация, запи- [c.509]

    Соответствующий подбор параметров позволяет осуществить реакцию присоединения. Длину волны света следует подобрать так, чтобы она включала полосу поглощения олефинового или ацетиленового соединения и, предпочтительно, чтобы не включала полосу поглощения продукта реакции по той причине, что желательно, чтобы субстрат в противоположность конечному продукту был достаточно возбужденным, чтобы вступать в реакцию. Лучше всего работать при наименьших длинах волн света, добиваться возбуждения правильным подбором фильтров, даже если это и приведет к значительному увеличению времени реакции. Другим средством инициирования реакции является использование сенсибилизаторов, но они иногда изменяют направление реакции. В основном сенсибилизатор это агент для переноса энергии света. Он активируется до синглетного или триплетного состояния и именно в последнем состоянии активирует субстрат в результате интеркомбинационной конверсии. Энергия возбуждения триплета должна быть выше соответственно энергии субстрата [48]. Ниже приведены некоторые энергии триплетов в ккал/моль пропиофенон 74,6 бензо-фенон 68,5 трифенилен 66,6 нафталин 60,9 пирен 48,7. Если энергия триплета ниже энергии субстрата, сенсибилизатор может подавить реакцию. К сожалению, в случае олефинов используемые в качестве сенсибилизаторов кетоны могут вступать в реакцию с образованием оксетанов. Наконец, выбор растворителя может оказаться решающим. Учитывая все эти переменные величины, трудно сделать обобщения относительно того, что можно и чего нельзя делать. Поэтому будут приведены характерные примеры каждого типа реакции для того, чтобы читатель мог сделать собственные заключения. Среди этих реакций имеются цис-транс-кзоьлериэй-ция (разд. Г.1), изомеризация с перемещением двойной связи (разд. Г, 1), образование мостиков и сдваивание. Эти примеры взяты из работы Кана [49], если не оговорено особо. [c.147]

    Термодинамич. расчет дает лишь частичную информацию о процессе-равновесный состав и т-ру продуктов. Полное описание Г., включающее также определение скорости процесса и критич. условий при наличии тепло-и массообмена с окружающей средой, можно провести только в рамках макрокинетич. подхода, рассматривающего хим. р-цию во взаимосвязи с процессами переноса энергии и в-ва (см. Макрокинетика). В случае заранее перемешанной смеси горючего и окислителя р-ция Г. может происходить во всем пространстве, занятом горючей смесью (объемное Г.), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде т. наз. волны Г. В непереме-шанных системах возможно диффузионное Г., при к-ром р-ция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону. [c.595]


Смотреть страницы где упоминается термин Перенос энергии волнами: [c.69]    [c.55]    [c.137]    [c.192]    [c.137]    [c.192]    [c.139]    [c.32]    [c.616]    [c.337]    [c.403]    [c.284]   
Смотреть главы в:

Физика моря Изд.4 -> Перенос энергии волнами




ПОИСК







© 2025 chem21.info Реклама на сайте