Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы концентрирование растворов

    В реакциях полимераналогичных превращений образование сетчатых структур является следствием побочных процессов, которые стараются, по возможности, предотвратить, чтобы сохранить линейность макромолекул. Однако проводят и такие процессы химического превращения, в результате которых из первичных линейных полимеров получаются полимеры сетчатой структуры. Такое сшивание , или вулканизацию , линейных полимеров проводят либо в концентрированных растворах полимера, либо при нагревании его до вязкотекучего состояния. Для ускорения процесса межмолекулярного взаимодействия повышают температуру и давление. [c.177]


    Приготовление прядильной массы. Получение вязких концентрированных растворов (7—25%-ных) высокополимеров в доступных растворителях (щелочь, ацетон, спирт и пр.) или перевод смолы в расплавленное состояние — обязательное условие для осуществления процесса прядения или, правильнее сказать, формования химических волокон. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолекулярных связей ориентировать молекулы вдоль оси будущего волокна (рис. 90). [c.208]

    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]

    Самопроизвольное разделение гомогенного раствора на две фазы в этом процессе представляется, на первый взгляд, неожиданным, поскольку в нем возникают концентрационные градиенты, а также фазовые границы, обладающие избыточной энергией. Статистическая трактовка, предложенная Онзагером [13, с. 456], вскрывает энтропийный характер коацервации. Вытянутые макромолекулы в растворе перекрываются сферами действия, в результате чего уменьшается свобода броуновского движения. Выделение части макромолекул в другую, более концентрированную фазу, значительно увеличивает свободу вращательного движения всех макромолекул, оставшихся в дисперсионной среде (мало изменяя ее для макромолекул коацервата), а следовательно и энтропию системы. [c.316]


    Коэффициент диффузии полимера чаще всего оценивают по скорости изменения показателя преломления п раствора при диффузии макромолекул из более концентрированного раствора в чистый растворитель. [c.41]

    При рассмотрении процесса течения концентрированных растворов и расплавов полимеров необходимо учитывать те же основные реологические факторы, что и для простых жидкостей, но с учетом ограничений, обусловленных гибкостью макромолекул, а также межмолекулярного взаимодействия между ними. [c.183]

    Ранее отмечалось, что критерием подвижности отдельной макромолекулы в приложенном силовом поле является кинетический сегмент. Для реализации возможности перемещения макромолекулы в концентрированном растворе или расплаве полимера должны возникать пустоты ( дырки ), объем которых соизмерим с объемом кинетического сегмента (см. рис. 2.4). Суммарный объем таких дырок , имеющих флуктуационную природу, составляет свободный объем жидкости, Vf. Очевидно, что величина свободного объема, необходимого для перемещения одиночной макромолекулы в жидкости, должна соответствовать действующему объему Кд кинетического сегмента. [c.183]

    Выше отмечалось, что структура полимерных жидкостей (концентрированных растворов и расплавов полимеров) моделируется системой взаимодействующих агрегатов, пачек макромолекул, имеющих флуктуационный характер под влиянием теплового движения полимерные цепи постоянно ассоциируются в более или менее упорядоченные флуктуирующие рои, которые в свою очередь под влиянием теплового движения распадаются. [c.184]

    Температурная зависимость вязкости концентрированных растворов полимеров (рис. 4.16, б) определяется физикохимическими свойствами системы полимер - растворитель (в частности, термодинамическим качеством растворителя, концентрацией полимера, гибкостью макромолекул), а также напряжением сдвига т (табл. 4.4). [c.192]

    Например, Дж.Ферри относит к концентрированным также растворы полимеров, в которых отношение вязкости раствора к вязкости растворителя, т.е. т)от , больше 100. В зависимости от термодинамической гибкости макромолекул область перехода от разбавленных к концентрированным растворам составляет от долей % (мае.) - для жесткоцепных до 8-10% (мае.) - для гибкоцепных полимеров. [c.195]

    ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ, РАЗВЕТВЛЕННОСТИ МАКРОМОЛЕКУЛ И ПОЛИДИСПЕРСНОСТИ НА ЭФФЕКТИВНУЮ ВЯЗКОСТЬ КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ И РАСПЛАВОВ ПОЛИМЕРОВ [c.197]

    Растворы концентрированные - растворы, в которых С > [т1]" и макромолекулы растворенного полимера взаимодействуют друг с другом. [c.404]

    В процессе кристаллизации полимеров из слабоконцентрированных растворов каждая макромолекула участвует в формировании отдельного монокристалла и полностью свободна от взаимодействия и зацеплений с другими макромолекулами. В концентрированных растворах и расплавах полимеров, для которых характерно наличие в одном объеме множества молекулярных клубков, это положение утрачивает силу. Основным морфологическим элементом, из которого формируются надмолекулярные структуры, по-прежнему остается ламель, образованная складчатой цепью, однако наличие зацеплений, затрудняющих пристраивание соседних цепей, приводит к образованию более дефектных и сложных с морфологической точки зрения структур. [c.52]

    Некоторые дополнительные выводы о поведении нефтяных дисперсных систем возможно сделать, рассматривая их как разбавленные растворы. При этом особое внимание уделяется концентрации этих растворов. Интерес представляет изучение возможности применения для нефтяных дисперсных систем результатов исследований концентрированных растворов полимеров, к которым отнесены такие растворы, где макромолекулы и их агрегаты перекрываются с одновременным сжатием и уменьшением размеров. Сжатие начинается при концентрации растворов, равной приближенно обратному значению характеристической вязкости. Этот факт находится в непосредственной взаимосвязи с изменением термодинамических характеристик нефтяных дисперсных систем при изменении состава дисперсионной среды, а точнее ее растворяющей способности по отношению к компонентам дисперсной фазы. [c.40]

    Введение низкомолекулярной соли в раствор полиэлектролита приводит к образованию около заряженных макромолекул ионных оболочек из противоионов, которые экранируют взаимодействие зарядов по цепи и вызывают уменьшение 1 эл и Др/Са Однако даже при очень высокой ионной силе раствора сохраняются электростатические взаимодействия между ближайшими по цепи заряженными группами. Поэтому кривые потенциометрического титрования полиэлектролитов даже в концентрированном растворе низкомолекулярной соли отличаются от кривых титрования соответствующих низкомолекулярных аналогов. [c.154]

    В концентрированных растворах, когда вероятность столкновения макромолекул достаточно велика, они взаимодействуют друг с другом мало сольватированными уча- [c.61]


    На осмотическое давление в достаточно концентрированных растворах полимеров может существенным образом влиять способ приготовления раствора. Предварительное нагревание и перемешивание способствуют повышению осмотического давления, а охлаждение или длительное выдерживание раствора, наоборот, понижению его. Причина этих явлений заключается в образовании ассоциатов или даже пространственных сеток макромолекул в достаточно концентрированных растворах полимеров й их разрушении при перемешивании или нагревании раствора. [c.456]

    Положение граничной области между разбавленным и умеренно концентрированным раствором зависит от степени полимеризации макромолекул и от природы полимера и растворителя. Для систем, с которыми чаще всего приходится иметь дело на практике такое состояние достигается уже при концентрациях раствора, не превышающих единиц процентов. [c.84]

    Характеристическая вязкость может быть использована в качестве критерия перехода от разбавленного к умеренно концентрированному раствору. Значение [ri] пропорционально объему макромолекулярного клубка, поэтому раствор можно считать разбавленным, если для него С <С Последнее неравенство означает, что объем раствора, занятый макромолекулами, значительно меньше общего объема раствора. Раствор считают умеренно концентрированным при условии С 1/[т1] и концентрированным — при С 1/[т)]. [c.102]

    В растворах большей концентрации (начиная с 1 % и выше) образуются вторичные надмолекулярные образования, называемые часто ассоциатами макромолекул. Реакция может приобрести гетерогенный характер, причем наружные макромолекулы в ассоциатах реагируют в первую очередь, а дальнейшее проникновение низкомолекулярного реагента внутрь ассоциата может оказаться затрудненным. Наличие в ассоциате ориентированных участков усиливает эти затруднения. По этим причинам в концентрированных растворах полимеров химические реакции с низкомолекулярными реагентами протекают медленнее и до меньших степеней превращения. Продукт реакции неоднороден по молекулярному составу (см. пример на рис. 19.1). [c.277]

    Пластифицированные смолы получают, вводя в полимерные соединения пластификаторы, увеличивающие их гибкость и снижающие температуру стеклования. Пластификаторы — это низкомолекулярные нелетучие соединения с низкой температурой застывания. Эффект пластификации достигается в результате растворения низкомолекулярного вещества и полимера друг в друге, т. е. в результате проникновения и распределения пластификатора между макромолекулами полимера. Иными словами, пластифицированные материалы — очень концентрированные растворы полимеров. Из-за того, что низкомолекулярное соединение расположено между макромолекулами, изменяется структура вещества связь между цепными макромолекулами ослабляется, они приобретают подвижность и способность изгибаться, а это придает гибкость и эластичность материалу. Чтобы полимер и низкомолекулярное вещество взаимно растворились, должны быть либо оба полярными, либо оба не- [c.27]

    В концентрированных растворах полимеров вероятность столкновений макромолекул велика, и они могут взаимодействовать между собой, образовывая ассоциаты (так называемые рои). Такие ассоциаты состоят из сравнительно малого числа макромолекул и не являются фазой. В отличие от мицелл коллоидов они существуют не постоянно, а распадаются и вновь возникают в различных участках объема системы. Ассоциаты— прообразы пучков и пачек макромолекул, о которых было сказано выше (см. стр. 190). [c.201]

    При таком формализме онисания пространственной вероятностной меры в теории удается естественным образом учесть образование циклических фрагментов в молекулах конечных размеров, т. е. выйти за рамки приближения среднего поля. Последнее, как известно, обычно хорошо описывает экспериментальные данные в системах, где разветвленные полимеры образуются в расплаве или концентрированном растворе. Однако по мере разбавления раствора начинают наблюдаться все большие отклонения от теории среднего поля за счет возрастания роли внутримолекулярных реакций при формировании ансамбля макромолекул. Учесть этот эффект позволяет изложенная в разделе III теория возмущения ио малому параметру 8, значение которого обратно пропорционально концентрации звеньев в растворе. В нулевом порядке по этому параметру, когда рассматриваются только древообразные графы, получаются результаты приближения среднего поля, а в каждом последующем порядке теории возмущений учитываются циклы все более сложной топологии. [c.147]

    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    Разветвленность макромолекул влияет на ло и на величину аномалии вязкостных свойств. При одинаковых значениях значения ло концентрированных растворов (или расплавов) разветвленных полимеров оказываются меньшими, чем линейных. В некоторых случаях эти различия достиганзт десятичного порядка. У разветвленных полимеров увеличение ло при повышении M , происходит в больщей мере, чем у линейных. С увеличением X и у влияние разветвленности на л эф ослабевает и при достаточно больших их значениях становится пренебрежимо малым. [c.200]

    Если мельчайшие капельки коацерватов не обладают достаточной агрегативной устойчивостью и в то же время не способны к коалесценции (слиянию), то они могут соединяться друг с другом, образуя флокулы, которые всплывают или опускаются на дно сосуда в виде рыхлого осадка. Такая флокуляция происходит обычно, когда фаза с большим содержанием высокомолекулярного компонента обладает достаточной вязкостью. Если же вязкость фазы небольшая, то происходит обычно коалесценция отдельных мельчайших капелек и постепенное образование более крупных капелек. Обычно при длительном стоянии системы, в которой произошла коацервация, образуются два гомогенных жидких слоя, состоящих из фаз с различным содержанием высокомолекулярного вещества. Наконец, в достаточно концентрированных растворах высокомолекулярных соединений за счет сцепления макромолекул в отдельных местах могут образовываться постоянные пространственные сетки, благодаря чему раствор превращается в студень. [c.467]

    Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных волокнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур. [c.289]

    В концентрированных растворах НЛС в результате уваличе- ния вероятности столкновений макромолекул они могут образовывать друг с другом достаточно бо.льше ассоциаты ( рои ). Ассоциаты в отличив от мицепл существуют не постоянно. Они респадвится и вновь возникают в других точках системы. Ассоци-аты представляют собой прообразы пучков и пачек макромолекул. [c.69]

    Однако существуют некоторые причины, действительно сближающие растворы высокомолекулярных веществ с коллоидными системами. Так, растворы высокомолекулярных соединений в плохих растворителях содержат молекулы (или агрегаты молекул), свернутые в компактный клубок с явно выраженной межфазной поверхностью. По существу, они представляют отдельную фазу. Такие растворы высокомолекулярных соединений действительно можно отнести к коллоидным системам. Далее, в концентрированных растворах высокомолекулярных веществ обычно возникают достаточно большие ассоциаты макромолекул, существующие неопределенно долго. Эти частицы также можно рассматривать как вторую фазу или, по крайней мере, как зародыши этой фазы. Наконец, растворы высокомолекулярных веществ благодаря большим размерам их молекул обладают, как будет показано ниже, рядом свойств лиозолей, что позволяет рассматривать многие проблемы одновременно и для коллоидных растворов, и для растворов высокомолекулярных веществ. [c.416]

    Все сказанное выше о том, что молекулы полимеров не связаны друг с другом и ведут себя вполне самостоятельно, верно лишь в том случае, когда они находятся в относительно разбавленных растворах. В концентрированных растворах, когда вероятность столкновения молекул растворенного вещества достаточно велика, макромолекулы могут взаимодействовать и образовывать так называемые рои, или асссоциаты. Эти ассоциаты, состоящие из сравнительно малого числа молекул и представляющие собой про- образ пачек, о которых мы уже говорили при рассмотрении структуры полимеров, обычно не обладают достаточной протяженностью и поэтому не могут считаться фазой. Кроме того, ассоциаты, в отличие от мицелл, существуют не постоянно, они возникают в одном месте, затем распадаются и снова возникают в другом. Таким образом, ассоциаты в разбавленных растворах полимеров не являются постоянно существующими образованиями и не имеют определенного состава. [c.436]

    Водородный показатель рН о, устанавливающийся в растворе чистого белка, характеризует изоионную точку. Очень часто она близка к изоэлектрической. Различие между ними увеличивается, если снижается концентрация белка, так как изоэлектрическая точка не зависит от концентрации полиэлектролита. В изоэлектрической точке электростатическое притяжение между противоположно заряженными частями макромолекул глобулярных белков выражается всего сильнее. В таком состоянии макромолекулы стремятся принять наиболее плотную клубковую упаковку, и растворимость их становится минимальной. Так как в достаточно концентрированных растворах изоионная точка близка к изоэлектрической, то тщательной очисткой раствора от примесных электролитов можно выделить белок из раствора. Для этой цели удобен метод электродиализа. [c.215]

    Для процесса сшивания в расплаве или концентрированном растворе одинаковых линейных макромолекул с числом звеньев I Де Жен [121] теоретически установил, что классическая теория Флори является хорошим приближением для описания такой вулканизации, поскольку для нее 01 < 1. Авторы [122] ставят этот результат под сомнение, считая, что теория среднего поля не может адекватно описывать гелеобразование ни в каких системах. К иному выводу пришел автор [123] в результате скейлингового рассмотрения вулканизации цепей как в концентрированном, так п в полуразбавленном растворах. Статистическое описание ансамбля сшитых линейных макромолекул оказывается можно, как и продукты поликонденсации, осуществлять с помощью термодинамического рассмотрения некоторой решеточной модели [124]. Однако в отличие от поликонденсации ее гамильтониан вместо (1.60) будет [c.192]


Смотреть страницы где упоминается термин Макромолекулы концентрирование растворов: [c.40]    [c.173]    [c.223]    [c.83]    [c.283]    [c.392]    [c.463]    [c.171]    [c.243]    [c.128]    [c.463]   
Методы практической биохимии (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Макромолекула в растворе

Растворы концентрированные



© 2025 chem21.info Реклама на сайте