Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывающие орбиты

    Четыре пары электронов приходятся на четыре трехцентровые связывающие орбитали, т. е. на каждый из атомов кислорода приходится по две пары связывающих электронов. Таким образом, можно считать, что порядок связи между атомом кислорода и углерода в молекуле СО2 равен 2. Это можно отразить структурной формулой 0=С=0. [c.63]

    Молекулярные орбитали. Длина связи. Перекрывание орбиталей и связывающие орбитали. Узловые плоскости и разрыхляющие орбитали. Сигма (а)-орбитали. Процесс заполнения орбиталей. Эффективное число связывающих электронов. [c.509]


Рис. 12-5. Энергетика образования связи в молекуле Н . а-кривая потенциальной энергии молекулы с электронами на связывающей орбитали, имеющая минимум при экспериментально наблюдаемом Рис. 12-5. <a href="/info/1663850">Энергетика образования связи</a> в молекуле Н . а-<a href="/info/68268">кривая потенциальной энергии молекулы</a> с электронами на связывающей орбитали, имеющая минимум при экспериментально наблюдаемом
    Азот. В молекуле азота, N2, все связывающие орбитали, энергетические уровни которых изображены на рис. 12-8, оказываются заполненными. Молекула N2 имеет электронную конфигурацию  [c.526]

    Волновая функция связывающей молекулярной орбитали в области перекрывания аддитивна. В результате электронная плотность сконцентрирована в. межъядерной области, и связывающая орбиталь имеет более низкую энергию, чем атомные орбитали, из которых она возникла. Зависимость энергии электрона на связывающей орбитали от межъядерного [c.542]

    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]

    Почему было бы неверно общее утверждение, что связывающие орбитали имеют низкие энергии, а разрыхляющие орбитали - высокие энергии Каким свойством обязательно должна обладать связывающая молекулярная орбиталь  [c.545]

    Однако особые электрические и магнитные свойства этих металлов исключают возможность простого представления о классических катионах (N1 Ре или Ре ), окруженных валентными электронами. Пока еще не достигнуто полное согласие по вопросу о распределении электронов в переходных металлах. По Полингу [12], связывающие орбитали образуются из орбиталей п 1) , (га 4- 1)р и некоторых из [c.31]

    Знак плюс в уравнении (1.61) отвечает связывающей орбитали, минус — разрыхляющей. [c.127]


    Молекула На. Электронная конфигурация молекулы Н2 в основном состоянии Нг Ь), молекулярный терм (дублет сигма). Единственный электрон молекулы на ag связывающей орбитали обеспечивает химическую связь. Молекула Нг — свободный радикал. Радикалами называют частицы с открытыми оболочками. Радикальный характер молекулы Нг легко обнаруживается по ее парамагнетизму, обусловленному только спином электрона, так как орбитальный магнитный момент молекулы равен нулю. Другие свободные радикалы также парамагнитны. В молекуле Нг между единственным электроном и ядрами нет экранирующих электронов, поэтому она характеризуется самым высоким значением ПИ = 16,25 эВ и СЭ = = 15,4261 эВ, намного превышающим СЭ других молекул. [c.75]

    Как видно из рис. 29, орбитали /С-слоя 1а и 2а имеют ту же энергию, что в атоме, так же как и низколежащая орбиталь За . Индекс п указывает на несвязывающий характер орбиталей. Далее следуют связывающие орбитали [c.82]

    При очень высокой полярности связи [ 1 л 3 10" Кл м (9Д)] электронный заряд на связывающей орбитали уже не распределен между двумя ядрами, а практически сосредоточен в области одного ядра, как, например, у ядра Р в молекуле ЫаР. Здесь связывающая орбиталь мало отличается от атомной орбитали фтора Хр,.т. е. [c.90]

    Этот определитель имеет шесть корней, отвечающих шести молекулярным орбиталям. Самая низкая орбиталь обладает энергией Ег = а + 2р. Две следующие связывающие орбитали вырождены Е2 = Е =г сс + р. [c.116]

    Однако к ароматичности ведет не только секстетная конфигурация л-электронов. Согласно правилу 4п + 2 Хюккеля относительно устойчивыми плоскими моноциклическими системами атомов с тригональной гибридизацией являются только системы, содержащие 4л -f 2 электронов. Это правило следует из простой теории МОХ, в которой для л-электронной циклической системы низшая связывающая орбиталь всегда заполняется двумя электронами, а все более высокие связывающие орбитали дважды вырождены и заполнены четырьмя электронами. Если число таких орбиталей п, то л-электрон-ная оболочка заполняется 4л + 2 электронами. Следовательно, ароматическими будут плоские моноциклические соединения, содержащие 2, 6, 10, 14 и т. д. л-электронов. Правило Хюккеля хорошо подтверждается на опыте. [c.119]

    Энергия активации перегруппировки будет определяться разностью энергий соединения А и промежуточного комплекса В. Трехатомной структуре соответствуют три орбитали, одна из которых связывающая, а две другие вырожденные, разрыхляющие. В случае иона карбония, тенденция которого к перегруппировкам хорошо известна, имеются только два электрона, и они могут быть отнесены к самой низшей связывающей орбитали (рис. 23,1а). Свободный электрон радикала должен идти на одну из разрыхляющих орбиталей (рис. 23, 1 б), что увеличивает энергию радикала. Стабилизация и снижение энергии переходного состояния В достигается за счет перераспределения электронной плотности при движении мигрирующей группы. Это перераспределение в свою очередь определяется строением группы [336]. В то же время довольно легко протекающая 1,2-миграция атомов галогенов 293] не может быть объяснена на основании сказанного выше. [c.197]

    Второй электрон в молекуле водорода может, как и первый, находиться или на связывающей, или на разрыхляющей орбитали, в частности оба электрона могут находиться на одной связывающей орбитали. Принципу Паули это ие противоречит, так как эти два электрона могут иметь противоположные спины. Общая волновая функция для двух электронов запишется [c.29]

    Существует несколько типов переходов. Возможны переходы со связывающей орбитали в основном состоянии на орбиталь с более высокой энергией это обычно переходы между о-орбиталями о->о -переходы, и между л-орбиталями я->л -переходы. Переходы а а наблюдаются в вакуумной УФ-области. Переходы наблюдаются начиная со 180 нм и выше причем полосы, соответствующие данным переходам, часто называют К-полосами их отличает высокая интенсивность поглощения (1 е 4). [c.8]

    МИ, такая орбиталь энергетически более выгодна, чем атомные орбитали. Наоборот, на разрыхляющей орбитали электронная плотность концентрируется за ядрами, поэтому подобная орбиталь энергетически менее выгодна, чем исходные атомные орбитали. Уровень энергии связывающей орбитали на схеме располагают ниже, а разрыхляющей орбитали выше уровня исходных атомных орбиталей. [c.46]

    По характеру распределения электронов 1то молекулярным орбиталям можно оценить энергию, длину и порядок связи (табл. 8). Нахождение электрона на связывающей орбитали обусловливает сокращение межъядерного расстояния и упрочнение молекулы. Наоборот, нахождение электрона на разрыхляющей орбитали приводит к уменьшению связывания и увеличению межъядерного расстояния (длины связи). [c.47]

    В ряду Н —Н )—Неа+ по мере заполнения связывающей орбитали энергия диссоциации молекул возрастает, с появлением же электрона на разрыхляющей орбитали, наоборот, уменьшается. Межъядерное расстояние вначале уменьшается, а затем увеличивается. [c.47]

    Связывающие орбитали по энергии ближе к орбиталям более электроотрицательного атома, разрыхляющие — ближе к орбиталям менее электроотрицательного атома (рис. 28). Образно говоря, электрон на связывающей орбитали большую часть времени проводит вокруг ядра более электроотрицательного атома, а на разрыхляющей орбитали — вокруг ядра менее электроотрицательного атома. [c.52]


    Энергия, длина и порядок связи. По характеру распределения злектронов по молекулярным орбиталям можно оценить энергию, ,лину и порядок связи. Как известно, нахождение электрона на связывающей орбитали означает концентрацию электронной плотности между ядрами, а это обусловливает сокращение межъядерного расстояния и упрочнение молекулы. Наоборот, нахождение электрона [а разрыхляющей орбитали означает, что электронная плотность онцентрируется за ядрами. В этом случае, следовательно, энергия связывания снижается, а межъядерное расстояние увеличивается  [c.50]

    Исследование заполненных электронами орбиталей по их связывающему или разрыхляющему характеру для определения эффективного числа связывающих электронов. (Некоторые разрыхляющие орбитали могут иметь более низкую энергию, чем другие связываюпще орбитали, и поэтому заполняются раньше них. Признаком связывающей орбитали является не более низкая энергия, а достижение минимума энергии при определенном межъядерном расстоянии, как показано на рис. 12-5, а.) Наличие двух нескомпенсированных связывающих электронов соответствует простой связи в рассмотренной выше модели Льюиса. [c.519]

    Кислород. В молекуле кислорода, О2, два следующих электрона, согласно правилу Гунда, вынуждены разместиться на двух разрыхляющих орбиталях, я и 71 поодиночке. Из 12 валентных электронов, имеющихся в молекуле О2, восемь занимают связывающие орбитали, а четыре — разрыхляющие. Эффективное число связывающих электронов равно 4, поэтому молекула оказывается двоесвязной. Два дополнительных по сравнению с Nj электрона, которые располагаются на разрыхляющих орбиталях, компенсируют связывающее действие двух из шести электронов, обусло- [c.528]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

Рис. 21-4. Трехцентровые орбитали в соединениях бора, а-каждый из трех атомов бора поставляет по одной орбитали (два атома 5р -гибриды и один атом р-орбиталь) для образования связывающей, несвязывающей и разрыхляющей молекулярных орбиталей. Одна электронная пара на связывающей орбитали удерживает все три атома вместе. Та- Рис. 21-4. Трехцентровые орбитали в <a href="/info/157583">соединениях бора</a>, а-каждый из трех атомов бора поставляет по одной орбитали (два атома 5р -гибриды и <a href="/info/481073">один атом</a> р-орбиталь) для образования связывающей, несвязывающей и разрыхляющей <a href="/info/1199">молекулярных орбиталей</a>. Одна <a href="/info/8609">электронная пара</a> на связывающей орбитали удерживает все три атома вместе. Та-
Рис. 21-6. Структура (а) и связывающие орбитали (б) пентаборана-11, Каждый из атомов бора использует для образования связей вр -гнбридные орбитали, кроме центрального атома, имеющего одну негибри-днзованную р-орбиталь и три гибридные зр -орбитали. Закрытая трехцентровая связь возникает в результате перекрывания двух 5р -орбиталей Рис. 21-6. Структура (а) и связывающие орбитали (б) пентаборана-11, Каждый из атомов бора использует для <a href="/info/7225">образования связей</a> вр -гнбридные орбитали, кроме центрального атома, имеющего одну негибри-днзованную р-орбиталь и три гибридные зр -орбитали. Закрытая <a href="/info/17026">трехцентровая связь</a> возникает в результате перекрывания <a href="/info/1696521">двух</a> 5р -орбиталей
    Согласно Уолшу [1], энергия связи С—Н возрастает с усилением s-характера связывающей орбитали  [c.65]

    Связывающие свойства. На связывающей орбитали энергия электрона ниже, а на антисвязывающей (разрыхляющей) выше, чем была в атоме на соответствующей АО, Переход электрона с АО на связывающую МО укрепляет связь в молекуле, а пере.ход на анти- [c.71]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)а двенадцать электронов шести молекул СО переходят на а-связывающие орбитали комплекса (а- д, Ьа и г)- Шесть электронов хрома располагаются на 2я-орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими п-орбиталями мЬлекулы СО, каждая из трех г -орби-талей с л -орбиталями двух молекул СО [c.128]

    Важнейшим видом химической связи в молекулах является так называемая коваугентная, нли гомеополярная, связь. Ковалентная связь образуется между двумя атомами, обладающими неспаренными электронами. При сближении атомов из двух атомных орбит, занимаемых неспаренными электронами, в результате взаимного возмущающего действия атомов образуются две молекулярные орбиты. Если неспаренные электроны сближающихся атомов имеют противоположно ориентированные (антипараллельные) спины, то они оба могут, согласно принципу Паули, попасть на низшую, энергетически более выгодную молекулярную орбиту (так называемую связывающую орбиту), что приводит к возникновению устойчивой связи между атомами. [c.10]

    В сущности, согласно гипотезе Кошланда, повышение скорости реакции образования лактонов во внутримолекулярной реакции вызвано тем, что нути сближения реагирующих групп ограничены некоторыми вполне определенными направлениями в противоположность статистической ориентации, наблюдаемой при бимолекулярной реакции. Кошланд считает, что орбитальное управление способно объяснить, почему ферменты столь эффективны. Вероятно, ферменты выстраивают связывающие орбитали реагирующих молекул и каталитических групп с точностью, невозможной при обычном бимолекулярном столкновении в растворе. Фермент не только сближает субстраты, (эффект сближения Брюса) существует еще фактор ориентации, связанный с формой электронных орбиталей реагпиюнноспособных атомов. Это-то и должно вызывать уникалы, ю каталитическую активность ферментов. Удивительная каталитическая активность ферментов, следовательно, вытекает не только из их способности приблихоть реагирующие атомы, но также и направлять орби- [c.212]

    Электрону, находящемуся па связываюшей орбитали, соответствует электронное облако с повышенной электронной плотностью в межъ-ядерном пространстве, в результате чего энергия взаимодействия электрона с ядрами оказывается ниже, чем энергия того же электрона на исходной атомной орбитали, где он взаимодействует только с одним ядром. Поэтому нахождение электрона на связывающей молекулярной орбитали приводит к сближению ядер до некоторого расстояния, на котором его связывающее действие уравновешивается возрастающей при сближении ядер силой их электростатического отталкивания. В результате этого между атомами возникает химическая связь. Простейшей частицей с химической связью является молекулярный ион Нг, в котором один электрон на связывающей орбитали взаимодействует с двумя ядрами водорода (протонами). [c.10]


Смотреть страницы где упоминается термин Связывающие орбиты: [c.56]    [c.12]    [c.521]    [c.562]    [c.563]    [c.226]    [c.332]    [c.115]    [c.106]    [c.18]    [c.107]    [c.301]    [c.80]    [c.117]   
Природа химической связи (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридные связывающие орбиты. Тетраэдрический атом углерода

КАО связывающая

Октаэдрические связывающие орбит

Орбита

Орбиты связывающие и разрыхляющие

Орбиты связывающие, противоположно расположенные

Связи энергия и связывающие орбит

Связывающие молекулярные орбиты

Связывающие орбитали Орбита

Связывающие орбитали Орбита ли связывающие

Связывающие орбиты гибридные

Связывающие орбиты квадратные

Связывающие орбиты противоположно направленные

Связывающие орбиты тетраэдрические

Связывающие орбиты тригональные



© 2024 chem21.info Реклама на сайте