Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан гибридные орбитали

    Следует отметить, что направление связей в метане не предсказано в методе валентных связей, как иногда говорят-Здесь исходят из установленной на опыте конфигурации молекулы и постулируют сушествование отвечающих ей четырех равноценных орби--талей, направленных под углом 109°28, которые затем выражают через линейные комбинации орбиталей свободного атома. Аналогично рассматривают и соединения типа BF3. Молекула ВРз плоская, с атомом бора в центре. Угол между связями В—F, имеющими одинаковую длину, равен 120°. Электронная конфигурация атома бора в возбужденном состоянии (15 2л% 2/7) не удовлетворяет в методе ВС трем равноценным связям. Поэтому допускается существование у атома бора в поле трех атомов фтора трех гибридных ( -орбиталей, описываемых смешением одной s- и двух р- орбиталей. Эти три гибридные орбитали, называемые лр -гибридами, аналогичны по форме орбиталям, представленным на рис. 73. Их оси направлены в плоскости от центра под углом 120°. Перекрывание их ср -орбиталями трех атомов фтора отвечает образованию плоской симметричной молекулы BF3 (рис. 74). Таким же образом атом Ве, имеющий в возбужденном состоянии конфигурацию l5 2s2p, образует при вступлении в соединение две гибридные 5р-орбитали, расположенные под углом 180°, отвечающие линейной конфигурации молекулы BeF 2. [c.186]


    МЕТАН (СН4), гибридизация и теория отталкивания электронных пар валентно оболочки. Для того чтобы воссоздать картину атома углерода, удерживающего при себе четыре группы, необходимо обратиться к его возбужденному электронному состоянию. Возбужденное состояние атома включает.образование четырех новых внешних орбиталей путем гибридизации 25-орбитали и всех трех 2р-орбиталей. (Квантовая механика постулирует, что мы должны создавать столько же новых орбиталей, сколько вступает в гибридизацию.) Четыре гибридные орбитали обладают одинаковой энергией, и каждая из них обозначается 2 вр (2 означает главное квантовое число, а зр указывает на то, что орбиталь является гибридной и состоит на одну четверть из -орбитали, а па три четверти из р-орбиталей). [c.49]

    Структура метана, получающаяся при комбинировании этих гибридных орбиталей с 1з-орбиталями четырех атомов водорода, находится в полном согласии с давно известным фактом все связи в метане равноценны, а углы между связями составляют 109°28. Это соответствует представлению о том, что атом углерода в молекуле метана находится как бы в центре правильного тетраэдра, а четыре связи с атомами водорода направлены к вершинам. Эта структура изображена на рис. 12. [c.55]

    Равноценность химических связей в метане можно объяснить, используя представление о гибридизации орбиталей. Гибридизацией называется изменение формы и энергии различных орбиталей одного атома, приводящее к образованию одинаковых (гибридных) орбиталей. [c.303]

    Направленность гибридных орбиталей часто служила основанием для рассуждений о направленности химических связей, особенно при дополнительном условии, что наиболее прочные химические связи образуются по направлениям максимального перекрывания орбиталей двух соседних центров (критерий, использовавшийся при построении гибридных орбиталей Л. Полингом в начале 30-х годов). Более того, конструкции двух, трех и четырех эквивалентных орбита-лей, которые могут быть построены из одной 5 и трех р орбиталей у данного центра и которые получили название вр, зр и зр гибридных орбиталей, служили в свое время обоснованием линейного, тригональ-ного и тетраэдрического расположения соседних атомов (заместителей) у данного центра, хотя, как следует из всего вышесказанного, не гибридизация определяет расположение заместителей, а именно расположение заместителей определяет характер гибридизации орбиталей у данного центра. В частности, прямыми расчетами было показано, что если в базисе отсутствует 5-функция, то с тремя р-функциями, определяющими в конечном итоге сферическое распределение заряда у данного центра, получаются те же самые результаты для оптимального расположения четырех заместителей, например атомов водорода в метане, что и при использовании построений с гибридными орбиталями. [c.354]


    Таким образом, четыре простые (ординарные) ковалентные связи в метане образованы перекрыванием четырех тетраэдрических (гибридных) орбиталей атома углерода с 15-орбиталями атомов водорода. Атом углерода в молекулах метана и других насыщенных углеводородов находится в состоянии вр -гибридизации. [c.31]

    С энергиями связей в метане ассоциируется и еще один вопрос. В методе локализованных орбиталей каждую орбиталь представляют как образующуюся в результате локализованного перекрывания хр -гибридной орбитали углерода и АО водорода. Создается впечатление, что атом углерода первоначально должен находиться в таком состоянии, когда каждый из его четырех валентных электронов занимает одну из четырех гибридных АО. Из приведенных ранее в этом разделе соображений следует, что такое состояние, когда четыре электрона на гибридных орбиталях обладают параллельными спинами, может возникнуть из состояния, в котором четыре электрона с параллельными спинами расположены на нормальных 25-, 2рх-, 2ру- и 2рг-АО. Такое состояние представляет собой возбужденное 5-состояние атома углерода. Оно, как известно, расположено приблизительно на 100 ккал/моль выше основного Р-состояния (см. разд. 4.2), Поэтому согласно приводимому в учебниках описанию молекулы метана сначала необходимо промотировать атом углерода в состояние 5, а уже потом строить четыре локализованные связи. Тогда теплота образования АЯ равна учетверенной истинной энергии связи СН минус энергия промотирования (---100 ккал/моль). [c.183]

    Эта независимость двухцентровых орбиталей удобна для описания Направленности четырех связей С—Н в метане, их равной длины и аддитивности энергии связи молекулы. Метан ведет себя так, как если бы в его молекуле существовали четыре независимые связи С—Н, каждая из которых бы осуществлялась локализованной парой электронов, по одному с орбитали атома водорода и по одному с гибридной орбитали атома углерода. Однако в действительности электроны делокализованы, а гибридизация — не физическая реальность, а удобный математический прием. [c.199]

    Например, при образовании молекулы метана гибридизации подвергаются орбитали атома углерода одна 5-и три р-орбитали. Вид и число орбиталей, участвующи. с в гибридизации, определяет ее тип. Так, в метане проявляется 5рЗ-гибридизация. Рис. 19.1 показывает, как из одной 8- и трех р-орбиталей образуются четыре одинаковые гибридные р -орбитали. В пространстве эти орбитали расположены относительно друг друга под одинаковыми углами и направлены к вершинам тетраэдра. [c.303]

    Связи между неодинаковыми атомами образуются аналогично. Связывающие электроны связи С — Н в насыщенном углеводороде находятся на молекулярной орбитали, состоящей из 15-орбитали атома водорода и гибридной 5р -орбитали атома углерода. Так, на четырех сг-орбиталях этого типа расположены связывающие электроны в молекуле метана СН4. Как и в молекуле Н2, разрыхляющие а-орбитали связи С — Н отвечают более высоким энергиям, причем первое одноэлектронное возбуждение а а в метане наблюдается при длине волны около 120 ммк. Последующие углеводороды содержат орбитали связи С — С, а также С — Н, но и в этом случае энергия возбуждения лежит еще достаточно высоко, и поглощение наблюдается в дальней ультрафиолетовой области. Поэтому чистые насыщенные углеводороды прозрачны для длин волн ближней ультрафиолетовой области. [c.54]

    В результате такого перехода образуются четыре неспаренных электрона (один 5- и три р-) 28р . Это возможно потому, что состояния 2з и 2р очень близки в энергетическом отношении. Затраченная при этом энергия (676,2 кДж/моль) затем с избытком компенсируется при образовании четырех связей. Но, учитывая строение электронной оболочки атома углерода в возбужденном состоянии, можно ошибочно предположить, что, например, в молекуле метана имеются четыре неравноценных связи одна 5—х-связь и три 5—р-связи. Это противоречит экспериментальным данным, согласно которым в симметрично построенных соединениях углерода (метан, четыреххлористый углерод и др.) все связи (С—Н или С—С1) совершенно одинаковы. Теоретическое объяснение этого факта основывается на возможной гибридизации (смешении) атомных орбиталей (Л. Полинг, Ж. Слейтер, 1931). Было показано, что орбитали не могут существовать в изолированном, чистом виде они обязательно влияют друг на друга. Минимумом энергии обладают только смешанные, гибридные орбитали. [c.15]

    Математическое описание образования гибридных 5р -орби-талей атома С (в метане) более сложное, но принципиально не отличается от описания гибридных 5р-орбиталей. В результате 5р -гибридизации получаются четыре эквивалентные орбитали, направленные в пространстве к вершинам тетраэдра. Каждая из гибридных 5р -орбиталей имеет два лепестка больший (со знаком плюс) и меньший (со знаком минус) контурная диаграмма электронной плотности для такой орбитали показана на рис. 4.14, а. В дальнейшем будет использоваться схематичное изображение граничной поверхности гибридной орбитали (рис. 4.14,6) и ее условное изображение в виде только связывающего лепестка (рис. 4.14,в). [c.98]


    Теоретические и экспериментальные обобщения показали [94—96], что константа взаимодействия протонов метиленовой группы является функцией углов между связями С—Н и, следовательно, функцией гибридного состояния атома углерода. В обычных соединениях ее значение изменяется от —12,4 Гц при sp -гибридном (метан, циклогексан) до 2,5 Гц при sp -гибридном (этилен) состояниях атома углерода (табл. 7.8). Отклонения от этих значений зависят от природы заместителей и характера проявляемых ими эффектов. Оттягивание электронов со связи С—Н на антисимметричную связующую орбиталь (— -эффект) способствует понижению, а на симметричную (— /-эффект) повышению константы взаимодействия. Гетероатом в а-положении обычно повышает величину /гел . [c.187]

    ПОДХОД к валентной связи, как к локализованным гибридным орбиталям с определенными направленными свойствами, соответствует стереохимическим описаниям. Так, можно предсказать структуру молекулы примерно с той же степенью достоверности, что и для гибридных орбиталей центрального многовалентного атома. Например, описание тетраэдрического расположения четырех валентностей атома углерода в метане с помощью гибридных sp -op-биталей является безусловно значительным теоретическим достижением этого метода. [c.198]

    Очевидно, что атом углерода при связывании с четырьмя другими атомами не использует одну освободившуюся 25-орбиталц и три 2р-атомные орбитали, поскольку это должно было бы приводить к образованию трех взаимно перпендикулярных связей (с тремя 2р-орбиталями) и одной отличной от них, не имеющей направления связи (со сферически симметричной 25-орбиталью), чего в действительности нет. В таком -соединении, как, например, метан, все четыре СН-связи, как известно, тождественны и расположены симметрично (тетраэдрически) одна по отношению к другой под углом 109°28 Это можно обг/ясиить тем, что одна 25- и три 2р-атомные орбитали объединяются с тем, чтобы образовать четыре новые идентичные орбитали, способные давать более прочные химические связи (см. стр. 21). Эти новые орбитали известны под названием 5/> -гибридных атомных орбиталей, а их возникновение называют, соответственно, гибридизацией. Следует, однако, иметь в виду, что вопреки приведенной выше схеме гибридизация не есть реально протекающий физический процесс термин гибридизация отражает лишь используемый нами способ рассмотрения реального распределения электронов в молекуле, который состоит в том, что реальные орбитали мы рассматриваем как результат объединения 5- и р-орбиталей. [c.20]

    Такое представление о гибридных орбиталях удовлетворительно объясняет физические и химические свойства молекул, однако необходимо отметить, что 5р -орбитали, например, соответствуют только одному возможному приближенному решению уравнения Шрёдингера. В принципе существует много разных равноценных способов комбинации одной 5- и трех р-атомных орбиталей. Как будет показано в разд. 1.5, четыре связи С—Н в метане не всегда ведут себя так, как если бы они были эквивалентными. [c.21]

    Можно предположить, что углы между связями р -угле-родного атома всегда должны быть углами правильного тетраэдра, т. е. равняться 109°28 однако это справедливо только в тех случаях, когда углерод связан с четырьмя одинаковыми группами, как в метане, неопентане или тетрахлориде углерода. В большинстве же случаев величина валентного угла несколько отличается от значения для правильного тетраэдра например, в 2-бромопропане угол С—С—Вг составляет 114,2° [63]. Точно так же у 5р - и кр-атомов углерода обычно наблюдается небольшое отклонение от идеальных величин валентных углов 120 и 180° соответственно. Такие отклонения объясняются некоторыми различиями в гибридизации у кр -углерода, связанного с четырьмя различными атомами, эти четыре гибридные орбитали, как правило, неэквивалентны, т. е. каждая из них не содержит в точности 25 %, 5- и 75% р-электронов. Поскольку в большинстве случаев четыре атома или группы имеют разную электроотрицательность, каждый из них предъявляет свои требования к электронам углерода [64]. Чем больше электроотрицательность заместителя, тем больший р-характер проявляет атом углерода например, в хлорометане связь С—С1 имеет р-характер более чем на 75 % и за счет этого р-характер остальных трех связей понижен, так как имеются всего три р-орбитали (и одна ), которые должны быть поделены между четырьмя гибридными орбиталями [65]. В напряженных молекулах валентные углы могут очень сильно отклоняться от идеальных значений (разд. 4.23). [c.37]

    В органических соединениях наиболее часто встречаются ковалентные связи, образованные обобществле-нисм пар электронов в результате перекрывания атомных электронных орбиталей двух взаимодействующих атомов, В зависимости от типа перекрывания орбиталей в органических соединениях существуют о- и я-связи. Образование а-связи наблюдается при перекрывании орбиталей двух атомов таким образом, что максимум их перекрывания (и, следовательно, максимум электронной плотности связи) находится на линии, соединяющей центры атомов. Атомы углерода образуют с-связи всегда при помощи гибридных орбиталей (sp , sp или sp). Атомы углерода образуют я-связь при боковом перекрывании р-орбиталей двух взаимодействующих атомов с образованием двух максимумов электронной плотности по обе стороны от линии, соединяющей центры атомов, я-связь менее прочная, чем а-связь, и образуется только тогда, когда между атомами уже есть о-евязь. Атом углерода в состоянии sp -гибридизации образует 4 а-связи, направленные в пространстве под углом 109.5 друг относительно друга. Такой атом называют тетраэдрическим (пример СН4 — метан). Атом углерода в состоянии sp -гибридизации образует 3 ст-связи, направленные в одной Плоскости под-углом 120 , и одну я-связь, направленную перпендикулярно этой плоскости (пример СН2=СН2 - [c.91]

    Таким же образом можно считать, что атом углерода имеет валентную конфигурацию 15 2з2рх2ру2р2 , получающуюся из конфигурации основного состояния при переходе одного из двух электронов, находящихся первоначально на 25-орбитали атома, на первоначально вакантную 2рг-орбиталь. В этой возбужденной конфигурации имеется четыре неспаренных электрона с одинаковыми спинами и их взаимодействие минимально, если они находятся на максимально возможном расстоянии друг от друга, т, е. в углах правильного тетраэдра с ядром в центре. Система лучше всего описывается четырьмя гибридными зр -орбиталями, аналогичными гибридным орбиталям в атоме неона [разд. 1,13, уравнение (1.48)]. Поэтому такую молекулу, как метан СН4, можно описать при помощи четырех локализованных связывающих молекулярных а-орбиталей, образованных комбинацией (перекрыванием) этих гибридных орбиталей с 15-орбиталями атомов водорода. В результате молекула метана имеет тетраэдрическое строение. [c.46]

    В годы, последовавшие за появлением метода валентных связей и его применением к молекуле водорода Гейтлером и Лондоном в 1927 г., Полинг , Слейтер и др. развили эту теорию и объяснили геометрические формы простых молекул, образованных многоковалентными атомами. В гл. 5 было показано, что подход к валентной связи, как к локализованным гибридным орбиталям с определенными направленными свойствами, соответствует сте-реохимическим описаниям. Предсказать структуру молекулы можно примерно с той же степенью достоверности, что и для гибридных орбиталей центрального многовалентного атома. Так, описание тетраэдрического расположения четырех валентностей атома углерода в метане с помощью гибридных р -орбиталей является безусловно значительным теоретическим достижением этого метода. Ниже не будет обсуждаться применение метода валентных связей для предсказания и описания структур молекул, так как это уже [c.190]

    Метан содержит четыре эквивалентные связи СН, направленные к вершинам тетраэдра. Чтобы сопоставить этим связям четыре эквивалентные электронные пары, необходимо построить четыре эквивалентные тетра-эдрически ориентированные гибридные орбитали из одной 2 - и трех 2р-орбиталей атома углерода. Поскольку каждая гибридная орбиталь должна содержать одну и ту же долю 8-функций и р-функций, сразу получаем, что для [c.70]

    Известно, что в ряду метан, этилен и ацетилен связь между водородом и углеродом становится все более полярной, а водород — все более положительным лучшим доказательством этого является способность ацетилена давать металлические производные. По Уолшу [23], это увеличение полярности СН-связей объясняется увеличением относительного содержания (V4, Vз и /г) -компоненты 5,р-гибридных орбиталей углерода в рассматриваемом [c.35]

    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Если перекрывание двух атомных орбиталей происходит вдоль их главных осей, то возникающую при этом связываю-ш,ую молекулярную орбиталь называют а-орбиталью, а обра зующуюся связь — соответственно о-связью а-Молекуля,риая орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, например, при образовании связей с атомами водорода в метане четыре гибридных 5р -атомных орбиталей атома углерода перекрываются с 15-атомными орбиталями четырех атомов водорода, образуя четыре идентичных прочных а-связи под углами 109°28 (тетраэдрический угол). Сходная, строго симметричная тетраэдрическая структура возникает также при образовании ССЦ. В случае же СН2С12 структура будет уже несколько отличаться от полностью симметричной, хотя в целом она останется тетраэдрической два объемистых атома хлора будут занимать несколько большую часть пространства, чем атомы водорода, и углы между связями Н—С—Н и С1—С—С будут несколько отличаться от величины 109" 28 и один от другого. .  [c.22]

    В гл. 2 уже говорилось о том, что метан содержит два типа связывающих молекулярных орбиталей тотально симметричную 1/1 и три вырожденные орбитали 1/2, и /4, каждая из которых имеет узловую плоскость. Это не означает, что существует какое-то различие в связывании четырех атомов водорода. Водородные атомы размещены те-траэдрически вокруг центрального атома углерода, и связи имеют равную энергию. Чтобы рассчитать энергию диссоциации связи и другие физические характеристики связей углерод - водород, удобно скомбинировать 2в- и три 2р-орбитали атома углерода, и тогда получатся гибридные орбитали 8р (символ 8р указывает, что гибрид получен из одной 28- и трех 2р-орбиталей). Эти гибридные орбитали углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре тетраэдрические связи. Гибридизация-это математический прием, позволяющий рассчитать энергию и пространственную ориентацию атомов в молекуле. Если исследовать энергетические уровни в метане, например, методом фотоэлектронной спектроскопии, то в действительности мы обнаружим два энергетических уровня, о чем говорилось в гл. 2. Кроме того, величину константы спин-спинового взаимодействия Н—в спектре ЯМР можно интерпретировать через 5-характер центрального атома углерода. [c.35]

Рис. 2.20. Делокали-зованные гибридные орбитали моле1д лы метана Как отмечалось выше, гшоский метан нестабилен потому, что групповая орбнталь ц/4 не участвует в связывании. Если бы эта орбиталь стшьно возмущалась, то ее нижний возмущенный уровень мог бы уйти ниже уровня орбитали Рг, и тогда в связывании четырех атомов углерода участвовало бы уже на 6, а 8 электронов. Эго возможно в аналогах метана АН4, в которых центральный атом А имеет доступные (т.е. отиосительно низко лежащие) (3-орбитали, та как симметрия <3 -орбиталей (два угловых узла) как раз подходит к симметрии орбитали ц/4 Рис. 2.20. Делокали-<a href="/info/1519583">зованные</a> <a href="/info/68163">гибридные орбитали</a> моле1д лы метана Как отмечалось выше, гшоский метан нестабилен потому, что групповая орбнталь ц/4 не участвует в связывании. Если бы эта орбиталь стшьно возмущалась, то ее нижний <a href="/info/50634">возмущенный уровень</a> мог бы уйти ниже уровня орбитали Рг, и тогда в связывании четырех атомов углерода участвовало бы уже на 6, а 8 электронов. Эго возможно в <a href="/info/1222757">аналогах метана</a> АН4, в которых <a href="/info/189596">центральный атом</a> А имеет доступные (т.е. отиосительно низко лежащие) (3-орбитали, та как симметрия <3 -орбиталей (два угловых узла) как раз подходит к симметрии орбитали ц/4
    Главные оси четырех sp -орбиталей углерода в метан направлены к вершинам тетраэдра, и валентные углы рав ны 109,5° Таким образом, теория гибридизации дала тео ретическое обоснование тетраэдрической модели атома уг лерода Вант-Гоффа и Ле Беля, предложенной ими в 1874 г Что дала гибридизация в итоге" Во-первых, несмотря н сохранение общей энергии системы (атома), гибридизац дала sp -гибридные орбитали, лучше приспособленные перекрывания, то есть образуются более прочные связи со гласно принципу максимального перекрывания (рис 111) Во-вторых, sp -гибридные орбитали с углами 109,5° обеспечивают минимальное отталкивание между четырьмя связывающими парами электронов [c.71]

    Очевидно, что при связывании атома углерода с четырьмя другими атомами не используются одна 25-орбиталь и три 2/7-орбитали, так как это привело бы к образованию трех взаимно перпендикулярных связей (с тремя 2р-орбиталями) и одной связи, отличающейся от них и не имеющей направления (со сферически симметричной 25-орбиталью). В действительности, четыре С—Н-связи, например в метане, как известно, равноценны и расположены симметрично (тетраэдрически) под углом 109°28 друг к другу. Это можно объяснить тем, что одна 2х- и 2р-орбитали объединяются так, чтобы образовать четыре новые (идентичные) орбитали, способные дать более прочные связи (ср. разд. 1.5). Эти новые орбитали известны под названием хр -гибридных атомных орбиталей, а процесс их образования [c.12]

    Если две атомные орбитали перекрываются вдоль их главных осей, то возникающую при этом связывающую орбиталь называют о-орбиталью , а образующуюся связь — о-связью. Молекулярная ст-орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, при образовании связей с атомами водорода в метане четыре гибридные 5у0 -орбитали атома углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре идентичные прочные ст-связи, располагающиеся под углом 109°28 друг к другу (стандартный тетраэдрический угол). Сходная строго симметричная тетраэдрическая структура возникает также, например, при образовании ССЦ если же атомы, образующие связи с углеродом, неодинаковы, например в случае СНгСЬ, пространственная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической (ср. разд. 1.2). [c.15]

    Теперь проанализируем некоторые схемы гибридизации с точки зрения типов атомных орбиталей, необходимых для построения гибридов. Поскольку необходимые орбитали свободны, то возможно существование определенного набора гибридов. Однако существуют некоторые энергетические требования, которые также важны. Еслн одной или большему числу орбиталей, требующихся для гибридизации, соответствует значительно большая энергия, чем у других, то энергетически невозможно, чтобы для атома в действительности была достигнута полная гибридизация. Так, если обратиться к метану (рис. 3.2) и предположить, что энергия возбуждения намного выше, скажем >П5 ккал/г-атом (а не 96 ккал/г-атом), то конфигурация СНг должна быть более устойчива, чем СН4. Другой пример сера, хотя и имеет б электронов во внешнем слое, образует небольшое число соединений, в которых используются шесть гибридных <1 8р -орбиталей, так как энергия, необходимая для возбуждения атома серы из [Ме]35 3р -основного состояния в [Ме]353р 3 -состояние, столь велика, что не компенсируется (за редким исключением) энергией образования шести связей. По энергетическим соображениям возможна также и смесь гибридных состояний. Две схемы гибридизации, дающие набор тетраэдрически направленных орбиталей, а именно хр и 5 , являются только крайними случаями, и возможно, что набор тетраэдрических гибридов образуется с использованием 5-орбитали и части каждого из двух наборов й у, И рх, Ру, рх- Для углеродз величина -характера, несомненно, неизмеримо мала, так как низшая свободная -орбиталь, а именно Ы, настолько выше 2р-орбитали, что ее использование возможно только с крайним энергетическим дефицитом. В тетраэдрических ионах МпО ", СгО и т. д. Зй-орбитали имеют примерно ту же энергию, что и 4 х-орбиталь, а 4р-орбитали несколько большую. Гибридизация орбиталей атомов Мп и Сг в этих случаях, вероятно, представляет смесь и 5р -гибридов с -характером, большим, чем р-характер. [c.100]

    Считают, что связи в простейшем углеводороде, метане СН. , образованы четырьмя гибридными 5рЗ-орбиталями углерода (см. т. 1, стр. 439), каждая из которых перекрывается сЬ-орбиталью водородного атома. На каждой связывающей орбитали находятся по два электрона полностью или частично свободные орбитали, а также несвязывающие электронные пары отсутствуют. Кроме того, электроотрицательности (см. т. 1, стр. 427) углерода и водорода очень близки, а связи в метане почти полностью неполярны. В силу этих обстоятельств углеводороды обладают низкими температурами плавления и кипения и медленно реагируют при комнатной температуре метан загорается при под- [c.126]

    Орбиталь состоит из двух частей, внутренней сферы, и внешней оболочки р-орбитали также имеют две части, или доли, расположенные на противоположных сторонах ядра атома углерода. В метане эти четыре атомные орбитали гибридизуются с образованием четырех тетраэдрически расположенных зр -орбиталей, которые приблизительно имеют форму р-орбиталей. Математическими выводами теории валентности показано, что примесь 25% -характера должна удлинить одну долю р-орбитали и уменьшить другую кроме того, расчет приводит к выводу, что четыре гибридные орбитали должны быть ориентированы в пространстве тетраэдрически. Связь С—Н возникает при перекрывании каждой из этих орбиталей с 15-орбиталью атома водорода. [c.12]

    Понятие электроотрицательности важно также в теоретической органической химии, где можно установить корреляцию между химической реакционной способностью и плотностью электронного заряда на отдельных атомаЗс. Энергия ионизации -электрона больше, чем р-электрона, так как -электрон находится под более сильным воздействием ядра. Это означает, что чем больше -характер гибридной (зр) орбитали, тем больше будет эффективная электроотрицательность атома, на котором образуется эта орбиталь. Таким образом, электроотрицательность атома углерода в ацетилене (5р-гибридизация) больше, чем в метане, где углерод использует гибридные р= -орбитали. Этим объясняются кислотные свойства ацетилена, например легкость, с которой один из его атомов водорода может быть замещен натрием. [c.131]


Смотреть страницы где упоминается термин Метан гибридные орбитали: [c.2108]    [c.2159]    [c.59]    [c.228]    [c.232]    [c.19]    [c.100]    [c.257]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Орбиталь гибридная

гибридная



© 2025 chem21.info Реклама на сайте