Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деполяризация в синапсах

    Для аксона характерен ответ по принципу все или ничего. Потенциал действия распространяется по нейрону только в том случае, если степень деполяризации достигает достаточно высокого уровня. Как правило, импульсация начинается в нейроне только при условии одновременного поступления стимулов через несколько синапсов. Кроме того, существуют тормозные нейроны они высвобождают медиаторы, действие которых противоположно эффекту передающих возбуждение синапсов, т. е. направлено на предотвращение распространения возбуждения [36]. [c.327]


    Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы. [c.329]

    Нервное волокно представляет собой сильно вытянутую трубку из студневидного вещества, заполненную солевым раствором одного состава и омываемую солевым раствором другого состава. Эти растворы содержат электрически заряженные ионы, по отношению к которым напоминающая мембрану оболочка нерва обладает избирательной проницаемостью. Из-за различия в скоростях диффузии отрицательно и положительно заряженных ионов между внутренней и наружной поверхностью нервного волокна имеется некоторая разность потенциалов. Если ее мгновенно снизить, то есть вызвать местную деполяризацию, эта деполяризация распространится на соседние участки мембраны, в результате чего по волокну побежит ее волна. Это и есть так называемый спайк-потенциал, или нервный импульс. Мембрана не может быть разряжена частично она деполяризуется полностью на всем пути или не деполяризуется совсем. Кроме того, после прохождения импульса требуется некоторое время для восстановления первоначального потенциала мембраны, причем, до тех пор пока потенциал мембраны не восстановится, нервное волокно не сможет пропустить следующего импульса. Природу возникновения нервного импульса (по закону все или ничего ) и следующего за прохождением импульса рефрактерного периода (или периода возвращения волокна в первоначальное состояние) мы рассмотрим подробнее в последней главе книги. Если возбуждение получено где-то посредине волокна, импульс должен был бы распространяться в обе стороны. Но этого обычно не происходит, так как нервная ткань сконструирована таким образом, чтобы сигнал в любой данный момент шел в каком-то определенном направлении. Для этого нервные волокна соединены между собой в нерве специальными образованиями, синапсами, пропускающими сигналы только в одном направлении. [c.117]

    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]


    Ацетилхолин вызывает деполяризацию в постсинаптической мембране — возбуждающий постсинаптический потенциал (е. р. з.р.). В случаях некоторых нейромышечных синапсов данный потенциал называют потенциалом концевой пластинки (е. р. р.). Подобно локальному потенциалу, он быстро падает с увеличением расстояния от места возникновения и зависит от медиатора, т. е. если концентрация ацетилхолина увеличивается, деполяризация становится значительней. Если представить [c.120]

Рис. 8.2. Схема никотинового холинэргического синапса. Пресинаптическое нервное окончание содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). После синтеза (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти синаптические везикулы сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором (IV). В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется потенциал действия, т. е. химический сигнал снова превращается в электрический нервный импульс.) Наконец, медиатор инактивируется , т. е. либо расщепляется ферментом (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— холин — поглощается нервным окончанием (VII) и используется вновь. Базальная мембрана — диффузная структура, идентифицируемая методом электронной микроскопии в синаптической щели (рис. 8.3,а), здесь не показана. Рис. 8.2. Схема <a href="/info/1561416">никотинового холинэргического синапса</a>. <a href="/info/567158">Пресинаптическое нервное окончание</a> содержит компоненты для <a href="/info/11666">синтеза</a> нейромедиатора (здесь ацетилхолина). После <a href="/info/11666">синтеза</a> (I) <a href="/info/101629">нейромедиатор</a> упаковывается в пузырьки (везикулы) (II). Эти <a href="/info/265924">синаптические везикулы</a> сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и <a href="/info/101629">нейромедиатор</a> высвобождается таким путем в <a href="/info/103587">синаптическую щель</a>. Он диффундирует к постсинаптической мембране и связывается там со <a href="/info/32074">специфическим рецептором</a> (IV). В результате образования <a href="/info/101629">нейромедиатор</a>-<a href="/info/1356492">рецепторного комплекса</a> <a href="/info/102673">постсинаптическая мембрана</a> становится проницаемой для катионов (V), т. е. деполяризуется. (Если <a href="/info/17914">деполяризация</a> достаточно <a href="/info/499796">высока</a>, то появляется <a href="/info/109300">потенциал действия</a>, т. е. химический сигнал снова превращается в электрический <a href="/info/169060">нервный импульс</a>.) Наконец, <a href="/info/101004">медиатор</a> инактивируется , т. е. либо <a href="/info/1569005">расщепляется ферментом</a> (VI), либо удаляется из <a href="/info/103587">синаптической щели</a> посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— <a href="/info/1413">холин</a> — поглощается <a href="/info/566996">нервным окончанием</a> (VII) и используется вновь. <a href="/info/509001">Базальная мембрана</a> — диффузная структура, идентифицируемая <a href="/info/117537">методом электронной микроскопии</a> в <a href="/info/103587">синаптической щели</a> (рис. 8.3,а), здесь не показана.
    Периферическое никотиноподобное действие проявляется в передаче нервного возбуждения при малых дозах ацетилхолина в больших дозах может происходить стойкая деполяризация в области синапсов, что приведет к блокированию нервного возбуждения. Аналогичное действие ацетилхолина в синаптической передаче нервного импульса наблюдается также в центральной нервной системе. [c.71]

    Усиление. Каждый нервный импульс вызывает в нервно-мышечном синапсе высвобождение достаточного количества ацетилхолина, чтобы деполяризация постсинаптической мембраны обусловила сокращение мышечного волокна. Таким образом, нервные импульсы, приходящие к нервно-мышечному соединению, как бы [c.291]

    Итак, оказывается, что причиной выделения медиатора является не деполяризация сама по себе, а то, что деполяризация открывает дорогу кальцию внутрь терминали. И если убрать из наружной среды кальций, то как показали эксперименты, химический синапс не сработает ни при какой деполяризации и даже миниатюрные потенциалы исчезнут. [c.166]

    Посмотрите на рис. 59. На нем изображена палочка позвоночного животного. У нее есть внутренний сегмент и наружный сегмент, соединенные шейкой. В области внутреннего сегмента палочка образует синапсы и выделяет медиатор, действующий на связанные с ней нейроны сетчатки. Медиатор выделяется, как и у других клеток, при деполяризации. Во внешнем сегменте имеются особые образования — диски, в мембрану которых встроены молекулы родопсина. Этот белок и является непосредственным приёмником света.  [c.232]

    Как показали три простых наблюдения, для синаптической передачи необходим приток ионов кальция в окончание аксона. Во-первых, если в момент прибытия нервного импульса во внеклеточной среде вокруг окончания аксона эти ионы отсутствуют, то медиатор не высвобождается и передачи сигнала не происходит. Во-вторых, если через микропипетку искусственно ввести Са в цитоплазму нервного окончания, выход нейромедиатора происходит тотчас даже без электрической стимуляции аксона (это трудно осуществить на нервно-мышечном соединении из-за малых размеров окончания аксона, поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара) В-третьих, искусственная деполяризация окончания аксона (тоже в синапсе между гигантскими нейронами) без нервного импульса и в условиях блокады натриевых и калиевых каналов специфическими токсинами [c.306]

Рис. 19-21. Постсинаптический ответ на одиночный нервный импульс в нервно-мышечном соединении кривая изменений потенциала в мышечной клетке лягушки, полученная, как и на рис. 19-17, с помощью внутриклеточного электрода, расположенного вблизи синапса В норме постсинаптический потенциал (ПСП) - деполяризация, возникающая при прямом воздействии нейромедиатора на мембрану мышечной клетки, -достаточно велик для возбуждения потенциала действия, который может помешать эксперименту. Чистый ПСП, не осложненный нервным импульсом можно получить при введении средних концентраций кураре во внеклеточную среду. Этот яд, связываясь с частью рецепторов и блокируя их реакцию на нейромедиатор, снижает величину ПСП до уровня, при котором потенциал действия не возникает Рис. 19-21. Постсинаптический ответ на одиночный <a href="/info/169060">нервный импульс</a> в <a href="/info/510417">нервно-мышечном соединении</a> кривая <a href="/info/133432">изменений потенциала</a> в <a href="/info/1279682">мышечной клетке</a> лягушки, полученная, как и на рис. 19-17, с помощью <a href="/info/511085">внутриклеточного электрода</a>, расположенного вблизи синапса В норме <a href="/info/102674">постсинаптический потенциал</a> (ПСП) - <a href="/info/17914">деполяризация</a>, возникающая при прямом воздействии нейромедиатора на мембрану <a href="/info/1279682">мышечной клетки</a>, -достаточно велик для <a href="/info/374715">возбуждения потенциала</a> <a href="/info/25048">действия</a>, который может помешать эксперименту. Чистый ПСП, не <a href="/info/1571289">осложненный</a> <a href="/info/169060">нервным импульсом</a> можно <a href="/info/290578">получить</a> при введении <a href="/info/391296">средних концентраций</a> <a href="/info/109017">кураре</a> во внеклеточную среду. Этот яд, связываясь с частью рецепторов и блокируя их реакцию на <a href="/info/101629">нейромедиатор</a>, снижает величину ПСП до уровня, при котором <a href="/info/109300">потенциал действия</a> не возникает

    Итак, мы видели, что в ХС с помощью разных медиаторов могут открываться те или иные каналы клеточной мембраны. Если при этом возникает деполяризация — синапс возбуждающий, если возникает гиперполяризация — синапс тормозный, [c.172]

    Механизм действия курареподобных лекарственных средств другой группы — деполяризующих препаратов (лептокураре) —включает холиномиметический эффект, сопровождающийся стойкой деполяризацией. При этом нарушение передачи возбуждения с нерва на мышцу имеет такой же характер, как и при накоплении в синапсе большого избытка ацетилхолина. Препараты этой группы относительно быстро гидролизуются холинэстеразой и при однократном введении оказывают кратковременное действие, которое усиливается антихолинэстеразными препаратами. К деполяризующим средствам из применяющихся [c.30]

    Нейроны характеризуются необыкновенно высоким уровнем обмена веществ, значительная часть которого направлена на обеспечение работы натриевого насоса в мембранах и поддержание состояния возбуждения. Химические основы передачи нервного импульса по аксону уже обсуждались в гл. 5, разд. Б, 3. Последовательное раскрытие сначала натриевых и затем калиевых каналов можно считать твердо установленным. Менее ясным остается вопрос, сопряжено ли изменение ионной проницаемости, необходимое для распространения потенциала действия, с какими-либо особыми ферментативными процессами. Нахманзон указывает, что ацетилхолинэстераза присутствует в высокой концентрации на всем протяжении мембраны нейрона, а не только в синапсах [38, 39]. Он предполагает, что увеличение проницаемости к ионам натрия обусловлено кооперативным связыванием нескольких молекул ацетилхолина с мембранными рецепторами, которые либо сами составляют натриевые каналы, либо регулируют степень их открытия. При этом ацетилхолин высвобождается из участков накопления, расположенных на мембране, в результате деполяризации. Собственно, последовательность событий должна быть такова, что изменение электрического поля в мембране индуцирует изменение конформации белков, а это уже приводит к высвобождению ацетилхолина. Под действием аце-тилхолинэстеразы последний быстро распадается, и проницаемость мембраны для ионов натрия возвращается к исходному уровню. В целом приведенное описание отличается от описанной ранее схемы синаптической передачи только в одном отношении в нейронах ацетилхолин накапливается в связанной с белками форме, тогда как в синапсах — в специальных пузырьках. Существует мнение, что работа калиевых каналов регулируется ионами кальция. Чувствительный к изменению электрического поля Са-связывающий белок высвобождает Са +, который в свою очередь активирует каналы для К" , последнее происходит с некоторым запозданием относительно времени открытия натриевых каналов, что обусловлено различием в константах скоростей этих двух процессов [123]. Закрытие калиевых каналов обеспечивается энергией гидролиза АТР. Имеются и другие предположения о механизмах нервной проводимости [124]. Некоторые из них исходят из того, что нервная проводимость целиком обеспечивается работой натриевого насоса. [c.349]

    Рис. 6. . а — схема нервного волокна с синапсом. Показаны системы транспорта (АТРаза) и три различные системы пассивного транспорта. Справа — хемовозбудимая транспортная система, регулируемая молекулой непроме-диатора, например канал в постсинаптической мембране мышечной концевой пластинки, пропускающий ионы калия и натрия слева — отдельно К а+- и К+-каналы в мембране аксона, управляемые электрическим полем и открываемые при деполяризации бив — проводимость натрия gNг (б) и калня ё к, (в), а также входящий натриевый /ка и выходящий калиевый /к токи после деполяризации (60 мВ). Четко дифференцированная кинетика двух процессов N3 и к подразумевает существование индивидуальных молекулярных структур для пассивного натриевого и калиевого транспорта. [c.131]

    Кроме описанного действия GTX, ВТХ, вератридина, а также АТХ II на возбудимую мембрану, эти токсины стимулируют передачу химическими синапсами, что не является неожиданным, так как электрофизиологическими методами было показано, что секреция нейромедиатора ускоряется из-за деполяризации благодаря увеличению кальциевой проводимости пресинаптической мембраны. [c.150]

    Причиной высвобождения ацетилхолина является деполяризация нервного окончания в результате достигающего его потенциала действия. Однако в отсутствие ионов кальция во внеклеточном пространстве высвобождения медиатора не происходит. Мы уже упоминали, что ионы кальция влияют и на пороговую величину потенциала действия. Сейчас кажется очевидным, что они играют ключевую роль в химической синаптической передаче. Деполяризация нервного окончания увеличивает проницаемость мембраны для ионов кальция и, следовательно, их внутриклеточную концентрацию. Однако кальций, попадающий в нервное окончание, должен выделиться снова, если стимуляция Синапса временно прекращается. Имеются многочисленные доказательства того, что внутриклеточная концентрация кальция регулируется митохондриями и такими белками, как кальмодулин и кальциневрин (гл. 7). Митохондрии располагают очень эффективным кальциевым насосом, а ингибиторы митохондриальной функции вызывают, кроме того, количественное увеличение миниатюрного потенциала концевой пластинки, что также свидетельствует об ингибировании поглощения кальция митохондриями. Неясно, куда именно кальций переносится митохондриями с тем, чтобы они сами не перенасытились этими ионами. Еще меньше известно о молекулярном механизме кальциевой стимуляции высвобождения медиатора. Высказаны соображения о вкладе актомиозиниодобного комплекса, но экспериментальных доказательств этого еще нет. Зависимость кальциевого эффекта от его концентрации показывает, что несколько ионов (возможно, четыре) кооперативно активируют высвобождение кванта медиатора. Ионы Mg + конкурируют с [c.200]

    Классификация медиаторов как стимуляторных или ингибиторных нецелесообразна, так как их функция зависит от конкретного синапса и постсинаптического рецептора. Ацетилхолин, например, является стимулирующим медиатором в нейромышечной концевой пластинке, и в то же время проявляет ингибирующее действие в синапсе между блуждающим нервом и волокном сердечной мышцы. Мы уже упоминали о различии между никотиновыми и мускариновыми ацетилхолиновыми рецепторами. Однако на примере Aplysia было показано, что функция медиатора может оказаться еще более сложной. У этого организма имеется по крайней мере три типа холинэргических синапсов, или ацетилхолиновых рецепторов два ингибиторных и один возбуждающий. Ингибиторные синапсы различаются по ионной специфичности на одной постсинаптической мембране ацетилхолин увеличивает проницаемость для ионов калия, а на другой — для ионов хлора, в обоих случаях вызывая гиперполяризацию мембраны. На возбуждающем синапсе ацетилхолин вызывает деполяризацию, открывая натриевые каналы. Аналогичная двойная функция описана для медиаторов допамина и серотонина. Поэтому можно сказать только то, что ацетилхолин и глутамат, как правило, являются стимулирующими медиаторами, а глицин, 7-аминомасляная кислота и нор-адреналин — ингибиторными. [c.214]

    Только что описанная последовательность событий, когда самоусиливающая-ся деполяризация начинается с небольшого изменения мембранного потенциала, характерна для потенциала действия. Чтобы открылось достаточное для запуска этого процесса число натриевых каналов, начальное снижение мембранного потенциала должно деполяризовать мембрану до некоторого порогового уровня. Если этот порог достигнут, дальнейшее усиление деполяризующего стимула уже не будет влиять на максимальную величину сдвига мембранного потенциала однажды запущенный процесс самопроизвольно идет до конца независимо от силы первоначального стимула (рис. 18-19). Эту реакцию типа всё или ничего можно, как мы увидим позднее, противопоставить плавному (градуальному) изменению потенциала при открывании ли-ганд-зависимых каналов в синапсах. Именно благодаря этому принципу всё или ничего потенциалы действия могут передавать нервные сигналы на дальние расстояния без затухания или искажения. [c.86]

    Нервные сигналы переходят от клетки к клетке через синапсы, которые могут быть электрическими (щелевые контакты) или химическими. В химическом синапсе деполяризация пресинаптической мембраны в результате прибытия нервного импульса открывает потенциал-зависимые кальциевые каналы, вызывая тем самым приток Са в клетку, что приводит к освобождению нейромедиатора из синаптических пузырьков. Медиатор диффундирует в синаптическую щель и связывается с рецепторными белками в мембране постсинаптической клетки в конечном итоге медиатор удаляется из синаптической щели путем диффузии, ферментативного расщепления или обратного поглощения выделившей его клеткой. Через рецепторные белки, образующие лиганд-зависимые каналы, реализуется быстрый постсинаптический эффект нейромедиатора-открытие каналов приводит к возникновению возбуждающего или тормозного постсинаптического потенциам в соответствии с ионной специфичностью каналов. При участии рецепторов, сопряженных с ферментог ми, например с аденилатциклазой, обычно осуществляются медленные и более продолжительные эффекты. [c.111]

    Специальные преобразователи переводят сенсорные стимулы в форму нервных сигналов. Например, в рецепторе растяжения мышцы окончание сенсорного нерва деполяризуется при растяжении и величина деполяризации-рецепторный потенциал-для дальнейшей передачи перекодируется в частоту импульсного разряда. Слуховые волосковые клетки, избирательно реагирующие на звуки определенной частоты, сами не посылают импульсов, а передают сигналы о величине рецетпорного потенциала соседним нейронам через химические синапсы. Таким же образом действуют фоторецепторы глаза. В фоторецепторах свет вызывает конформационное изменение молекул родопсина, и это благодаря участию внутриклеточного второго посредника ведет к закрытию натриевых каналов в плазматической мембране, к ее гиперполяризации и в результате-к уменьшению количества высвобождаемого медиатора. Далее вставочные нейроны передают сигнал ганглиозным клеткам сетчатки, которые пересылают его в мозг в виде потенциалов действия. Проходя череъ нейронную сеть с конвергентными, дивергентными и тормозными латеральными связями, информация подвергается обработке, благодаря которой клетки высших уровней зрительной системы могут выявлять более сложные особенности пространственного распределения световых стимулов. [c.130]

    Без химического кодирования все-таки дело не обходится. В синапсе между дендритом и аксоном имеется промежуток (около 200 А) импульс, прошедший по аксону, вызывает выделение в эту зону ацетилхолина. Аце-тилхолин, действуя на дендрит соседнего нейрона, снижает мембранный потенциал и, следовательно, возникает импульс в аксоне этого нейрона. Фермент ацетилхолин-эстераза, разрушая ацетилхолин, немедленно прекращает химический контакт, как только импульс прошел через синапс. Если импульс, прошедший через синапс и воздействовавший химически на дендрит, слишком слаб, он вызовет незначительную деполяризацию в принимающей [c.228]

    На основании полученных данных авторы заключают, что токсин из G. venefi ium действует на нервную систему животных, а именно блокируя передачу в ганглиях и нервно-мышечных синапсах деполяризацией. Последнее, по-видимому, осуществляется путем увеличения проницаемости натрия и способствует быстрому проникновению его в клетки. [c.71]

    Ацетилхолин, содержащийся в кончике аксона, под действием приходящего нервного импульса освобождается и через синапс передается дендриту следующего нейрона. В дендрите содержится вещество, связывающее ацетилхолин (рецептор). При этом возникает новый импульс, который вызывает появление и распространение волны деполяризации в следующем нейроне. В синаптическом пространстве содержится фермент ацетилхолинэстераза, которая расщепляет ацетилхолин на уксусную кислоту и холин, поэтому импульс, переданный от одного нейрона к другому, длится определенный промежуток времени. Действие ацетилхолина на ганглии вегетативной нервной системы и на скелетные мышцы аналогично действию никотиновой кислоты, а действие его на гладкую и сердечную мышцы — замедление сокращений сердца, расширение просвета кровеносных сосудов и т. д.— подобно действию мускари-на. Холиномиметические вещества действуют на нервы парасимпатической системы, подобно ацетилхолину. Эти вещества вызывают стимулирование парасимпатической системы, например сокращение зрачка глаза, замедление сердечных сокращений. Пилокарпин, физостигмин, мускарин и ацетилхолин стимулируют парасимпатическую систему, тогда как атропин, скополамин и бантин ее угнетают. [c.385]

    Поступлению в дендрит ионов натрия через постсинаптическую мембрану вызывает ее деполяризацию (рис. 17.4, А). Если при этом достигается порог возбуждения, в нейроне генерируется потенциал действия, и нервный импульс распространяется дальше. Изменив проницаемость постсинаптической мембраны, ацетилхолин практически мгновенно удаляется из синаптической щели под действием фермента ацетилхолинэстеразы, иногда называемого просто холинэ-стеразой. Этот фермент локализован на постсинаптической мембране и гидролизует ацетилхолин до холина и остатка уксусной кислоты. В результате ионные каналы закрываются и синапс возвращается в исходное положение . Холин реабсорбируется синаптическим окончанием и вновь превращается в ацетилхолин в синаптических пузырьках (рис. 17.11). Некоторые нервно-паралитические газы, инсектициды и другие яды ингибируют ацетилхолинэстеразу, нарушая тем самым нервное проведение, о чем говорилось в разд. 4.4.3. [c.288]

    ТОРМОЗНЫЕ СИНАПСЫ. В тормозных синапсах высвобождение нейромедиатора повышает проницаемость постсинаптической мембраны для хлорид-ионов (С1 ) и ионов калия. Когда С1 -ионы устремляются в клетку, а К+-ионы — из нее по своим концентрационным градиентам, происходит гиперполяризация мембраны, называемая тормозным постсинаптическим потенциалом (ТПСП). Другими словами, содержимое клетки становится более отрицательным (до —90 мВ). Очевидно, что это затрудняет пороговую деполяризацию, т. е. генерирование потенциала действия. [c.289]

    Основные биохимические процессы, которые происходят при сокращении мышц, представлены на рис. 119. Сокращение запускается нервным импульсом. При этом в синапсе (1) — месте контакта нервного окончания с сарколеммой выделяется нейропередатчик ацетилхолин (2). Ацетилхолин (Ах) вызывает возбуждение сарколеммы, сопровождающееся деполяризацией мембраны и образованием на ее поверхности потенциала действия (3). Потенциал действия распространяется в глубь волокна через Т-системы, которые контактируют с мембранами саркоплазматического ретикулума. Возбуждение достигает мембранных образований [c.300]

    Таким образом, информация, которая передается в ЦНС посредством афферентной импульсации, перекодируется в синапсах химическими сигналами. Процесс возбуждения связан с действием ацетилхолина. Он проявляется в деполяризации нейрона, т. е. в торможении работы натриевого насоса. Гамма-аминомасляная кислота, действие которой связано с процессом торможения, вызывает гиперполяризацию нейрона, т. е. усиление работы натриевого насоса. Действие всех перечисленных факторов регулируется активностью ферментов, а активность ферментов, в свою очередь, определяется генетическим аппаратом. [c.9]

    Важная роль мембран в синапсах обусловлена их непосредственным участием в основных процессах деятельности нейрона в возбуждении и торможении. Это проявляется в биоэлектрической активности мембран в поляризации, деполяризации и гиперполяризации. В мембранные процессы вовлекаются медиаторы и ферменты, которыми регулируется уровень медиаторов. Характер взаимосвязи этих факторов иллюстрируют исследования, проведенные в нашей лаборатории Кометиани (1970, 1971). Он изучил взаимосвязь действия ацетилхолинэстеразы и Na" , К -АТФазы — двух ферментных систем, обусловливающих генерацию биопотенциалов, и пришел к заключению, что механизм активного транспорта, который связан с работой Na" , К+-АТФазы, и деполяризацию, обусловленную действием ацетилхолина, нужно рассматривать как части единого механизма генерации биопотенциала. Связь между ними осуществляется с помощью ионов. Импульсация, вызванная возбуждением, освобождает ацетилхолин. Последний тормозит Na , К+-АТФазу, в результате чего прекращается активный транспорт и клетка деполяризуется. В это время на арену выступает ацетилхолинэстераза, которая быстро разрушает ацетилхолин, благодаря чему создаются условия для стимулирования Na+, К+-АТФазы, и поляризация клетки восстанавливается. Интересно отметить, что максимум торможения Na+, К+-АТФазы аце-тилхолином наблюдается тогда, когда активность Na" , К -АТФазы наибольшая. [c.14]

    Итак, в покое, когда мотонейрон не возбужден, в синапсе существует небольшой электрический шум за счет случайного выброса ацетилхолина возникают миниатюрные потенпиалы средняя частота их — примерно один в секунду. Но амплитуда этих одиночных потенциалов слишком мала (0,5 мВ), и поэтому мышечное волокно не возбуждается (вспомним, что порог возбуждения равен 15—20 мВ). Когда же к терминали мотонейрона подходит ПД, то происходит массовое опорожнение везикул за 0,1 мс лопаются примерно 100 пузырьков (т. е. примерно в миллион раз больше, чем в покое). И все они выбрасывают свой ацетилхолин в синаптическую щель. В результате в мышечном волокне возникает деполяризация в 30— 50 мВ, что гораздо выше порогового значения. [c.165]

    Возникает естественный вопрос почему эта деполяризация исчезает Ведь действие химического синапса обычно кратковременно. Значит, ацетилхолин, открывающий каналы в постсинаптической мембране, куда-то девается. Оказывается, медиатор связывается с холинорецептором очень непрочно открыв ворота канала, он отрывается и вновь уходит в синаптическую щель. А в щели имеется особый фермент (ацетилхолинзстераза), который его разрушает. Так что медиатор — вещество очень скромное сделав свое дело, он тут же уходит. Именно это его свойство обеспечивает кратковременность действия химического синапса. [c.168]

    Даже тогда, когда в окончание аксона не поступают импульсы, вблизи синапса наблюдаются случайные кратковременные сдвиги потенциала мышечной мембраны в сторону деполяризации. Эти так называемые миниатюрные синантические потенциалы имеют примерно одинаковую амплитуду всего лишь около 1 мВ, что намного ниже порогового уровня. Возникают такие потенциалы случайным образом с достаточно низкой вероятностью, в среднем приблизительно раз в секунду (рис. 19-23). Каждый миниатюрный потенциал - это результат слияния одного синаптического пузырька с пресипаптической мембраной, т. е. результат выброса содержимого одного пузырька. Амплитуда, регистрируемая для данной мышечной клетки, более или менее постоянна, так как пузырьки содержат примерно одинаковое число молекул ацетилхолина - около 5000 Это минимальная порция, или квант , вьщеляемого медиатора. Сигналам большей силы соответствуют величины, кратные этой основной единице. Ионь кальция, входящие в окончание аксона во время потенциала действия, повышают за доли миллисекунды частоту опорожнения пузырьков более чем в 10000 раз по сравнению с частотой спонтанного опорожнения в покоящемся окончании. Тем не менее процесс остается вероятностным, единичная стимуляция нерва не всегда производит в точности одинаковый постсинаптический эффект если в среднем высвобождается 300 квантов медиатора, то в каждом отдельном случае число их может быть несколько большим или меньшим [c.309]

    Нервные сигналы передаются от клетки к клетке через синапсы, которые могут быть электрическими (щелевые контакты) или химическими. В химическом синапсе в результате деполяризации пресипаптической мембраны поо действием нервного импульса открываются потенциал-зависимые кальциевые каналы, что приводит к притоку ионов Са, которые в свою очередь вызывают высвобождение нейромедиатора из синаптических пузырьков путем экзоцитоза. Медиатор диффундирует через синаптическую щель и связывается рецепторными белками в мембране постсинаптической клетки. Из синаптической щели медиатор быстро удаляется путем диффузии, ферментативного расщепления или ж всасывания окончанием аксона или глиальными клетками. Рецептори, пейромедиаторов можно подразделить на связанные и не связанные [c.318]


Смотреть страницы где упоминается термин Деполяризация в синапсах: [c.117]    [c.30]    [c.338]    [c.30]    [c.120]    [c.367]    [c.104]    [c.105]    [c.199]    [c.471]    [c.289]    [c.327]    [c.8]    [c.164]    [c.320]   
Биохимия Том 3 (1980) -- [ c.111 , c.331 , c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Деполяризация



© 2025 chem21.info Реклама на сайте