Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, анодное растворение влияние органических ПАВ

    Образование окисных или солевых слоев влияет не только на анодное растворение металлов, но приводит и к ингибированию многих других электродных процессов. Так, при адсорбции кислорода на платине замедляется скорость ионизации молекулярного водорода в сернокислых растворах. Такое же влияние оказывает адсорбированный кислород и на электроокисление различных органических веществ (метанола, этанола, этилена и др.). На рис. 198 представлены тафелевские зависимости для анодного выделения кислорода на платиновом электроде из растворов хлорной кислоты. При достижении определенной плотности тока происходит резкий рост перенапряжения и выход о Т Г [c.373]


    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]

    В общем случае ионизация металлов в тех или иных степенях окисления зависит от природы растворителя, фонового электролита, его концентрации, плотности тока и способа активирования металлического электрода. Примеси воды обычно не оказывают заметного влияния на реакции анодного растворения металлов в органических растворителях. Однако они могут оказывать как акти- [c.532]

    В последние годы изучено большое количество органических соеди-нен,ий, адсорбция которых на электродах приводит к значительному торможению электрохимических процессов [1—3]. Введение их в электролиты увеличивает поляризацию и в определенных условиях позволяет получить катодные отложения металлов улучшенной структуры [4—61. Как правило, существует определенная связь между эффективностью действия таких веществ, как ингибиторы электрокристаллизации, и анодным растворением металлов, а также замедлением коррозии черных и цветных металлов в ра-, створах [7]. Последняя основана на прямом влиянии адсорбционных пленок на электродные процессы [8—91 и зависимости адсорбции от знака и величины заряда поверхности металла [10—11]. [c.120]


    Сравнительно большой размер органических молекул ограничивает возможность их проникновения непосредственно в вершину трещины. По всей вероятности, в первый момент после очередного скачкообразного подрастания трещины на образующейся в ее вершине ювенильной поверхности металла адсорбируются вода, водород, кислород, имеющие гораздо меньший размер молекул. Это создает условия для интенсификации электрохимических коррозионных процессов анодного растворения металла и водородного охрупчивания. Растворение металла и выход не полностью гидратированных ионов железа резко снижает pH электролита в вершине трещины. Выделяющийся при катодном процессе водород адсорбируется ювенильной поверхностью и диффундирует в глубь металла в зону предразрушения, резко снижая ее пластичность и облегчая хрупкое разрушение. Являясь одним из существенных факторов, определяющих влияние смазочной среды на усталостную долговечность металла, наводороживание металла и водородный износ рассматривают как основную причину значительного снижения усталостной долговечности подшипников качения при наличии в масле даже микроколичеств воды, 92 . [c.33]

    Для воздействия на поляризационные свойства используют различные добавки в раствор — ингибиторы коррозии, которые адсорбируются на поверхности металла и уменьшают скорость катодной и (или) анодной реакции. Ингибиторы применяют, главным образом, для кислых растворов электролитов, иногда и для нейтральных. Ингибиторами служат разные органические соединен я, содержащие функциональные группы -ОН, —5Н. —МНа, —СООН и др. Пример влияния органического ингибитора тетрадецнлгидропиридинбромида на поляризационные кривые выделег ия водорода и растворения металла показан на рис. 18.8. Этот ингибитор заметно снижает скорости как анодного, так и катодного процессов. Поскольку воздействие на анодный процесс выражено несколько сильнее, бестоковый потенциал металла сдвигается в оложительную сторону. Ток саморастворения в присутствии ингибитора снижается пример- 0 на один порядок. [c.346]

    Кйррозия с диффузионным контролем протекает в спиртах, растворах глицерина, этиленгликоля органических кислотах. В результате концентрационной поляризации происходит торможение анодного растворения металлов в неводных органических и водно-органических средах. Иллюстрацией может служить влияние скорости перемешивания на коррозию в производстве бутилакрилата. [c.340]

    Экспериментальные данные по влиянию галоидных ионов на коррозионное поведение стали 1Х18Н9Т при сернокислотно1М травлении хорошо согласуются с хемосорбционной теорией и, следовательно, подтверждают и дополняют ее. Согласно этой теории [3J, [10], галоидные ионы при их добавке в раствор H2SO4, адсорбируясь на поверхности железа, вступают в химическое взаимодействие с поверхностными атомами металла, теряют связь с водной фазой и переходят, таким образом, в состав металлической обкладки двойного электрического слоя. Соединения эти полярны и ориентированы отрицательным полюсом своих диполей в сторону раствора. Этот адсорбционный слой сдвигает потенциал нулевого заряда (нулевую точку) в сторону более положительных значений и тормозит протекание катодного и, в меньшей степени, анодного электрохимических процессов, аналогично обнаруженному Б. В. Эршлером [25] замедляющему действию малых количеств кислорода на анодное растворение платины в НС1. При достаточных количествах галоидного иона происходит перезарядка поверхности Fe при стационарном потенциале из положительно в отрицательно заряженную, что способствует адсорбции органических катионов и усиливает их замедляющее действие. [c.104]

    Относительная медленность анодного растворения (и катодного осаждения) железа, кобальта и никеля по сравнению с соответствующими процессами для большинства других металлов известна давно. Ранее предположение [59], что это явление объясняется особой прочностью связи между катионами и электронами в решетке (этому соответствует малый или нулевой вклад электронов данных металлов в распределение электронов по энергиям в их сплавах, а также более высокая твердость и электрическое сопротивление, нежели можно было ожидать), использовалось неоднократно и в разных вариантах, хотя до сих пор высказанное предположение еще не доказано. Опыт показывает, что во многих случаях медленное анодное растворение железа ускоряется в присутствии небольших количеств сульфидов [60, 61], а растворение никеля — в присутствии сульфидов или хлоридов [56]. По-видимому, адсорбция этих ионов или других, образовавшихся из них частиц таким образом изменяет форму кривых Морзе для катионов, что энергетический барьер снижается. С другой стороны, замедление анодного растворения железа, стали и никеля при адсорбции аминов, Ы-циклических молекул, тиомочевии, сульфокислот и многих других органических веществ [62] легче объяснить, исходя из стерических, а не энергетических соображений. Так, Хор и Холлидей [51], показали, что замедление анодного растворения стали в серной кислоте при добавлении 2,6-диметилхинолина можно количественно связать с адсорбцией молекул ингибитора в виде локализованного монослоя Лэнгмюра на активных центрах. решетки А на рис. 48, а). В отсутствие такой адсорбции эти центры работают в качестве анодов. Более глубокому пониманию причин ускорения и замедления анодного растворения под влиянием адсорбции на поверхности раздела металл/раствор препятствует отсутствие данных о детальном механизме реакций в простейших условиях. [c.299]


    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Анион органического вещества, имеющий небольшие размеры, действительно ускоряет указанные реакции в этом случае он не ингибитор, а стимулятор коррозии. Анионоактивные вещества с длинной гидрофобной цепью могут быть, наоборот, ингибиторами коррозии, потому что, во-первых, они в растворе кислоты уподобляются веществам неионогенного типа, механизм действия которых уже рассмотрен во-вторых, вещества с более длинной гидрофобной цепью создают в приэлектродном слое более слабое электрическое поле, поэтому влияние их на изменение потенциала в реакционной зоне ослабевает. Как видно из рис. 3, б (кривая 3) в случае адсорбции анионов с более длинной гидрофобной ценью скачок потенциала в реакционной зоне уменьшается (г зР << г 5Р). Следовательно, в соответствии, с теорией замедленного разряда, уменьшаются скорости электрохимических реакций коррозионного процесса. Поэтому эффективность действия таких ингибиторов увеличивается. В то же время, как показали исследования [7, 8], в отличие от анионов органичен ских веществ ионы галогенов, хотя и имеют небольшие размеры, все-таки являются не стимуляторами, а ингибиторами коррозии стали в серной, хлорной и соляной кислотах. Объяснение наблюдаемому явлению дано в работе [8]. Авторы предположили, что при специфической адсорбции анионов на поверхности стали образуется хемисорбированное соединение атомов железа с этими ионами. Диполи этих соединений располагаются своим отрицательным концом в сторону раствора. В соответствии с рассмотренной схемой адсорбции ионов галогенов я з1-потенциал сдвигается в положительную сторону. Вследствие этого катодная реакция восстановления Н3О+ и анодная реакция ионизации металла замедляются, вызывая общее замедление растворения стали. В результате специфической адсорбции ионов галогенов уменьшается положительный заряд металлической обкладки двойного слоя. Поэтому облегчается адсорбция катионов органических веществ и увеличивается ингибирующее действие этих катионов в присутствии ионов галогенов. Механизм действия анионов органических и неорганических веществ различен. Поэтому понятно, почему в присутствии анионов органических веществ эффективность действия катионов органических веществ выражена меньше [3, 7]. Эффективность неионогенных веществ в присутствии анионов неорганических веществ также увеличивается. [c.135]

    Не очень плотный адсорбционный слой органического вещества может сильно задержать только катодную реакцию, в которой к электроду должен подходить многозарядный катион. При анодной реакции на электроде образуются ионы металла, и затруднение при отводе их от поверхности, как известно, не может приводить к очень большой концентрационной поляризации. Следовательно, механизм влияния иоверхностно-активного вещества на разряд металлических ионов оказывается зависящим от направления процесса. В особенности это касается веществ, адсорбирующихся сильнее при отрицательных зарядах поверхности металла. Действительно [118], на амальгаме кадмия в присутствии соли тетрабутиламмония при потенциалах, соответствующих катодной ветви кривой перенапряжения кадмия, наблюдается малый предельный ток, обусловленный трудностью проникновения Сс1 + через пленку органического вещества вблизи равновесного потенциала и на анодной ветви поляризационной кривой такого предельного тока уже нет и торможение растворения связано лишь [c.68]

    В реальных условиях в растворах электролитов содержится кислород или другие окислители, что приводит к усложнению картины электрохимических и адсорбционных явлений. В работе [230] было рассмотрено влияние ингибиторов на коррозию металлов в условиях кислородной и водородной деполяризации с учетом г1)1-потенциала. В присутствии кислорода или других окислителей смещение стационарного потенциала электрода, может привести к десорбции органического вещества за счет изменения заряда электрода или за счет удаления адсорбированного вещества вместе с ионами металла при быстром его растворении. При больших концентрациях окислителя с высоким окислительно-восстановительным потенциалом металл из активного состояния переходит в пассивное состояние В этом случае для оценки действия ингибиторов на коррозию металла следует рассматривать полную анодную потенциостатнческую хфивую, имеющую, кроме активной области, область пассивности и нерепассивации или анодной активации (пробоя). Такой подход в общем виде содержится в работах [231-233]. [c.236]


Смотреть страницы где упоминается термин Металлы, анодное растворение влияние органических ПАВ: [c.376]    [c.376]    [c.376]    [c.427]    [c.786]    [c.786]    [c.535]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Анодное растворение металлов

Металлы растворение

Органические металлы

Ток анодный



© 2025 chem21.info Реклама на сайте