Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Центры кристаллизации работа

    Центрами кристаллизации выделяющейся воды могут быть кристаллы углеводородов и частицы механических примесей. Выделяющаяся из топлива вода при изменении температуры, влажности или атмосферного давления находится в виде эмульсии воды с топливом. Эмульсия воды в топливе может образоваться также при нарушении правил транспортировки, хранения, перекачки, когда в топливо попадает свободная вода. Эмульсию воды с топливом очень трудно обнаружить и удалить из топлива, поэтому она представляет большую опасность для нормальной работы систем и агрегатов летательного аппарата. Эмульсия — это, как известно, смесь двух жидкостей, где одна жидкость распределена в другой в виде мельчайших капелек. Размеры капелек воды в водо-топливных эмульсиях находятся в пределах 10—40 мк. [c.50]


    Зависимость между молекулярным весом парафина и размерами образующихся кристаллов обусловливается в основном следующим. С повышением молекулярного веса уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает новообразование дополнительных кристаллических зародышей. Поэтому при кристаллизации высокомолекулярного высококипящего парафина выделяющаяся из раствора твердая фаза распределяется среди большого числа возникающих центров кристаллизации, вследствие чего размер образовавшихся кристалликов оказывается мелким. Детальный разбор и аналитическое обоснование описанного выше механизма влияния молекулярного веса парафина на размер образуемых им кристалликов был дан одним из авторов в работе [33]. [c.65]

    Особой тщательности требует работа с веществами, склонными образовывать пересыщенные растворы. При охлаждении растворов таких веществ кристаллы долго не выделяются главным образом вследствие отсутствия центров кристаллизации. Последующее выделение продукта из сильно пересыщенного раствора происходит слишком быстро, что создает неблагоприятные условия для правильного роста кристаллов. Некоторые соединения в отсутствие центров кристаллизации склонны выделяться из растворов в виде масла. Очистки вещества при этом, как правило, не происходит, даже если масло при дальнейшем понижении температуры затвердевает. Правильное проведение процесса в этих случаях может быть обеспечено путем стимулирования кристаллизации. [c.118]

    Крупным успехом в развитии теории кристаллизации явилось открытие вторичного зародышеобразования, занимающего одно из главных мест в непрерывных высокопроизводительных системах, в которых пересыщение раствора для устойчивой работы мало. Особенно интенсивно идет образование центров кристаллизации, если маточный кристалл приходит в контакт с другими объектами столкновение со стенками аппарата, мешалкой, столкновение кристалла и т. п. [c.39]

    Кристаллизатор F состоит из корпуса с внешним циркуляционным контуром, обслуживаемым центробежным насосом. Из-за относительно большой скорости циркуляции образование центров кристаллизации имеет место по всему объему суспензии. Авторами работы [118] предлагается модель каскада аппаратов с образованием центров кристаллизации в каждом аппарате. Функция рас- [c.142]

    Рассмотрим обзор работ по математическим моделям циркуляционно-вакуумных кристаллизаторов (ЦБК). Рассмотрим ячеечные модели ЦБК [54]. Б [54] рассматриваются два типа кристаллизаторов с естественной и принудительной циркуляцией. Для расчета распределения кристаллов по размерам в этих аппаратах использовался в качестве модели каскад последовательно работающих кристаллизаторов с полным перемешиванием. Для кристаллизатора с естественной циркуляцией применялась модель каскада аппаратов с образованием центров кристаллизации только в первом аппарате. Функция распределения кристаллов по размерам определялась по соотношению (1.536). Для кристаллизатора с принудительной циркуляцией применялась модель каскада аппаратов с образованием центров кристаллизации в каждом аппарате. Функция распределения кристаллов по размерам определялась из соотношения (1.535). [c.206]


    Подобным же образом влияют эти эффекты и на образование пересыщенных растворов и переохлажденных жидкостей. Внесение затравки новой фазы или введение других частиц, которые могут служить центрами ее образования, всегда вызывает самопроизвольно протекающий переход в устойчивую форму (например, засахаривание сиропов и варенья). Самопроизвольное образование центров кристаллизации (и вообще центров выделения новой фазы) определяется вероятностью образования соответствующих сочетаний молекул или ионов и связано с явлениями флюктуации. (Кинетику этих процессов мы рассмотрим в 202). Работы 3. Я- Берестневой и В. А. Каргина показали, что и при образовании кристаллической фазы из раствора зародыши ее часто возникают первоначально в виде аморфных частиц, которые с большей или меньшей скоростью переходят в кристаллическое состояние. [c.361]

    Если работа образования центра кристаллизации на частице нерастворимой примеси меньше, чем в объеме переохлажденной жидкости, то кристаллизация будет происходить на таких частицах при меньших переохлаждениях, чем в чистой жидкости. [c.395]

    С помощью уравнения (XIX.19) можно объяснить влияние на кристаллизацию добавок посторонних веществ, с помощью которых изменяют скорость кристаллизации и выбирают необходимую для кристаллизации величину переохлаждения. Нерастворимые примеси, находящиеся в жидкости в мелкодисперсном состоянии, обычно понижают работу Лкр, необходимую для образования кристаллического зародыша, и служат центрами кристаллизации. Даже ничтожное количество растворимых примесей при их адсорбции на поверхности зародышей может заметно уменьшить величину коэффициента поверхностного натяжения а и сильно увеличить о . Иногда наблюдается противоположный эффект, который объясняется затруднением процесса доставки молекул вещества через слой адсорбированной примеси к поверхности кристаллического зародыша. Растворимые примеси, влияющие на скорость кристаллизации, называются модификаторами. Применение модификаторов позволяет регулировать процесс кристаллизации и облегчает получение твердых веществ заданной структуры и с необходимыми свойствами. [c.265]

    Современные теории образования зародышей основаны на взглядах Д. Гиббса, развитых в дальнейшем М. Фольмером. В СССР этот вопрос плодотворно разрабатывался Я- И. Френкелем. Теория Гиббса сводится к следующему. Образование кристаллических зародышей происходит при переходе системы из метастабильного состояния в устойчивое. Примерами метастабильного состояния являются состояния пересыщенного пара, пересыщенного раствора, переохлажденной или перегретой жидкости. В метастабильном состоянии данная фаза может существовать неопределенно долгое время без всяких изменений, пока в этой фазе не появится зародыш другой фазы, например капелька жидкости в пересыщенном паре, центр кристаллизации в переохлажденной жидкости или пересыщенном растворе. Такое состояние может быть названо относительно устойчивым. Переход метастабильной фазы в стабильную всегда сопровождается уменьшением свободной энергии, всегда является самопроизвольным за исключением стадии образования зародышей. Возникновение зародышей связано с затратой свободной энергии на создание новой поверхности раздела фаз стабильной и метастабильной. Так как процесс перехода метастабильной фазы в стабильную на стадии образования зародыша сопровождается увеличением свободной энергии, то он не может происходить самопроизвольно до тех пор, пока зародыш не достигнет определенной величины. После этого переход совершается сам собой. Таким образом, для того чтобы вывести метастабильную фазу из относительно устойчивого состояния, необходимо затратить некоторую работу. Гиббс нашел способы для вычисления такой работы. [c.231]

    Для частично стабилизированного волокна "Куртель" характерна структура двух типов. При небольшой скорости подъема температуры карбонизации базисные плоскости располагаются циркулярно вблизи наружной поверхности волокна. Наружный слой, как предполагают авторы работы [137], служит источником центров кристаллизации для расположенного внутри нестабилизированного полимера. В последнем формируются радиально расположенные базисные плоскости. При карбонизации с высокой скоростью по оси волокна образуется трубка с примыкающим к ней ориентированным слоем, которь]й получается из газовой фазы, образовавшейся при пиролизе частично окисленного полимера. [c.237]

    Авторы работы [147] при исследованиях адсорбции воды изучили природу гидроксильных групп на частично дегидратированной поверхности кремнезема и роль таких групп как центров кристаллизации. Очевидно, эта роль заключается в индуцировании определенной степени упорядоченности в отдельных кластерах молекул воды, присоединяемых к небольшим полярным центрам на гидрофобной поверхности, что в конечном счете ведет к формированию зародышей кристаллизации льда. Такая поверхность представляет собой основу для проявления эффекта [c.972]


    Скорость образования зародышей зависит как от переохлаждения, так и от абсолютной величины температуры. При снижении температуры скорость образования центров кристаллизации сначала растет, так как переохлаждение увеличивается и работа образования зародышей АС уменьшается, а затем падает вместе с уменьшением подвижности частиц в жидкой фазе пропорционально —Е/кТ (рис. 101). При малой подвижности образования зародышей не происходит, несмотря на большое переохлаждение, и вещество застывает в виде стекла. [c.352]

    Магнитное поле может повышать скорость возникновения зародышей. Действие магнитного поля связывают либо с уменьшением энергии активации на величину поворота молекулы в магнитном поле, либо с уменьшением работы образования критического зародыша. Стимулирует кристаллизацию и радиоактивное излучение. Предполагается, что заряженные частицы, испускаемые радиоактивным веществом, способствуют образованию центров кристаллизации. [c.363]

    Адсорбционное взаимодействие на границе раздела фаз полимер — твердое тело, сказываясь на условиях формирования полимерного материала, приводит к изменению надмолекулярных структур граничных слоев и всей полимерной фазы в наполненной системе. В работе В. А. Каргина и Т. И. Соголовой [2561 показано, что введение в кристаллизующиеся полимеры твердых добавок позволяет регулировать размер и число сферолитов. Механизм действия добавок заключается в том, что на поверхности твердых частиц в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. С другой стороны, Ю. М. Малинским [257, 2581 установлено ингибирующее влияние твердой поверхности на кристаллизацию полимеров в пристенных слоях. [c.172]

    Как показано в работе существует некоторое оптимальное значение числа искусственно инициированных центров кристаллизации, соответствующее оптимуму прочностных характеристик. [c.161]

    Обычно стремятся обеспечить максимальную скорость роста кристаллов, совместимую с низкой скоростью образования центров кристаллизации. Такой процесс проводят при степенях пересыщения, близких к зоне резкого возрастания скорости образования центров кристаллизации, т. е, приблизительно там, где на кривой В нанесена стрелка (рис. IX-16). Однако не всегда выгодно работать при таких условиях, так как другие факторы могут оказаться более важными, чем фактор производительности. В некоторых случаях при степенях пересыщения, соответствующих быстрому возрастанию скорости образования зародышей, имеется тенденция к агломерации. Кроме того, установлено, что кристаллы азотнокислого аммония, полученные при максимальной производительности аппарата Кристалл , значительно менее прочны по сравнению с кристаллами, полученными при производительности, отвечающей меньшей степени пересыщения [c.591]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Однако потребность в глубокообезмасленных высокоплавких церезинах из года в год растет. В связи с этим исследованию возможности интенсифицировать процесс обезмасливаиия твердых углеводородов, особенно петролатумов, посвящено много работ. Известно, что некоторые примеси и специально введенные присадки могут изменять течение и характер кристаллизации твердых углеводородов при понижении температуры, влияя как на образование центров кристаллизации, так и на последующий рост кристаллов. Использование модификаторов структуры твердых углеводородов для интенсификаций обезмасливаиия представляет большой интерес. В этом случае без особых капитальных затрат можно значительно увеличить скорость фильтрования суспензии твердых углеводородов и, как следствие этого, увеличить производительность установки при одновременном повышении качества получаемых церезинов. Эффективность модификаторов структуры твердых углеводородов при обезмасливании зависит от их правильного выбора, который определяется природой и механизмом действия модификатора, составом и содержанием твердых углеводородов в сырье, а также структурой и содержанием в нем смолистых веществ. [c.176]

    В режиме кавитации скорость зародыщеобразования в растворах сильно возрастает. Чалмерс [3] предположил два механизма зарождения центров кристаллизации в ультразвуковом поле в режиме кавитации понижение температуры стенки пузырька при его расширении и сдвиг температуры плавления, вызываемый ударной волной. Подробное обсуждение этих механизмов приводится в работе Р. Хиклинга [8]. [c.148]

    Отстаивание, фильтрование и промывание. Если позволяют условия работы, то после осаждения лучше на некоторое время оставить осадок постоять под слоем раствора. Обычно при стоянии идет процесс старения , перекристаллизации, причем отдельные мелкие кристаллы переходят в крупные, осадок становится чище и его легче отделить фильтрованием. Однако это не является общим правилом. Иногда при длительном отстаивании количество загрязнений в осадке увеличивается, что наблюдается в случаях послеосаждения , когда частицы осадка являются центрами кристаллизации для некоторых примесей. Бывают и другие причины так, например, при анализе минералов во время отстаивания осадка А1(0Н)з в присутствии избытка гидроокиси аммония последняя поглощает углекислый газ из воздуха, а образующийся (NHJJ Oз вызывает осаждение Са обычно присутствующего в растворе. [c.81]

    Классическими работами в этой области долгое время считались работы Таммана, который исследовал процессы зародышеобразования для 150 различных органических веществ. Тамман придерживался взглядов о возможности самопроизвольного зародышеоб-разования центров кристаллизации в переохлажденных жидкостях. Большой вклад в теорию зарождения кристаллов внесли работы Фольмера, который получил соотношение для работы образования стабильного кристаллического зародыша внутри переохлажденного расплава. Свободная энергия Р образования сферического ядра радиуса г из расплава может быть выражена уравнением [c.52]

    Выполнение работы. В две пробирки внести по 4—5 капель раствора перрената аммония NH4Re04. Добавить в одну пробирку раствора хлорида калия, в другую — нитрата серебра. Наблюдать быстрое выпадение осадка перрената серебра. Выпал ли осадок перрената калия потереть стеклянной палочкой о стенку пробирки с раствором соли калия (для образования центров кристаллизации). Что наблюдается Написать уравнения протекающих реакций. Какая соль менее растворима  [c.226]

    В обычных условиях сколько-нибудь значительного переохлаждения воды не происходит, так как в ней имеются какие-нибудь твердые частицы или пылинки, которые выполняют роль центров кристаллизации. Но тщательно очищенную (и обеспыленную) воду можно подвергать значительному переохлаждению (до —15 или — 20° С). В облаках вода может сохраняться в жидком состоянии нередко до —40° С. Описана работа, в которой удалось переохладить воду лишь до —70° С. [c.13]

    Интересно проследить роль ПАВ в этом процессе — сложную и многогранную, как показали работы Сегаловой . Эти вещества понижают прочность, облегчая диспергирование и увеличивая дисперсность обеспечивают при вибрационном воздействии наиболее плотную упаковку частиц, благодаря пластификации и образованию гидрофильной смазки на поверхности частиц уменьшают минимальное содержание воды в системе (водоцементное отношение), обеспечивающее текучесть замедляют индукционный период схватывания, блокируя центры кристаллизации. Последнее обстоятельство существенно для быстротвердеющих цементов, ибо дает время, необходимое для укладки в форму или опалубку. Подобные примеры, демонстрирующие значение коллоидной химии и ее отрасли — физико-химической механики — для производственных процессов весьма многочисленны. [c.281]

    Кристаллизация жидкости определяется двумя факторами скоростью возникновения зародышей v, которую также называют скоростью зарождения центров кристаллизации (с.з.ц. к.), и скоростью роста этих центров— линейной скоростью кристаллизации Од (л. с. к.). Величина v пропорциональна концентрации зародышей Сз и скорости обмена молекулами между зародышем и жидкостью и. Образование зародышей и перенос молекул являются активационными процессами и выражаются уравнениями Са=С ехр(—Лир/Т ) п и = =С"ехр(—E/RT), где С и С" — постоянные Е — энергия активации переноса. Первое уравнение характеризует вероятность образования зародышей, а второе — скорость молекулярного обмена. Таким образом, v = =kiexp —E/RT) ехр (—Auv/RT), где — постоянная. Можно показать, что работа образования критического зародыша Лкр уменьшается при увеличении переохлаждения АТ (обратно пропорциональна АР) и увеличивается пропорционально а . Учитывая это, получаем  [c.286]

    В качестве добавок, образующих центры кристаллизации, могут применяться также тонкодисперсные порошки кизельгура, каолина, перлита, а также аэросила. Аэросил является продуктом гидролиза тетрахлорида кремния в водородном пламени. Указанные добавки повышают прочность граиул, не ие оказывают существенного влияния иа их слеживаемость. Применение порошковидных добавок усложняет технологию производства аммиачной селитры, в частности работу грануляторов (особенно статических). В Советском Союзе порошковидные добавки не применяют. [c.164]

    Как видно из результатов опытов, повышение температуры экранирующей поверхности и расположение ее ближе к монокристаллу не вызвало резкого улучшения качества. Одной из причин могло служить то обстоятельство, что выращиваемый монокристалл не был полностью экранирован, так как нагреватель в начальный момент располагался на расстоянии 20—25 мм от уровня расплава, по мере его убывания площадь свободной от экранирования поверхности непрерывно увеличивалась. Попытки закрыть всю поверхность кристалла экраном приводили к тому, что затравка во время затравления оплавлялась и вырастить монокристалл было невозмож-1Ю. Не менее важным фактором следует считать неустойчивость режима роста, наблюдавшуюся в процессе опытов. При работе с экраном приходилось значительно снижать мощность основного нагревателя, что приводило иногда к возникновению побочных центров кристаллизации на поверхности расплава. Кроме того, колебания электрического напряжения вызывали нарушение теплового режима экрана. Поэтому получение монокристаллов постоянного диаметра было затруднено. Слитки, выращенные в таких условиях экранирования, имели непостоянный диаметр по длине с разницей в 2,0—3,0 мм. [c.225]

    В работах Михневича с сотр. [92—95] было доказано существование граничных слоев переохлажденного полярного бетола и пиперина толщиной до 1 мкм вблизи поверхности стекла. Особая структура проявлялась здесь в замедлении образования в ориентированных поверхностью граничных слоях центров кристаллизации по сравнению с объемной частью той же жидкости. Активность поверхности могла быть снижена обработкой стекла раствором плавиковой кислоты или покрытием его тонким слоем коллодия. Действие импульсного магнитного поля приводило к разрушению ориентированной структуры тонких пристенных слоев бетола [95]. Было сделано предположение, что вязкость пристенных слоев переохлажденного бетола имеет аномально высокие значения. Этот вывод подтвержден недавно Межидовыми [96] при измерениях зависимости скорости распространения фронта кристаллизации переохлажденных дифенилами-ла, тимола и бетола от радиуса капилляров, менявшегося в этих экспериментах от 4 мкм до 15 мм. [c.213]

    Интересно, что кристаллизация аморфных гидроксидов протекает без растворения, а путем перестройки полимерной структуры первичной частицы причем при появлении в первичных частицах упорядоченных областей частицы наращиваются на однотипные грани соседних частиц. Эти микроколлективы, или окристаллизованные частицы, становятся центрами кристаллизации, на которые наращиваются другие окристаллизованные частицы-зародыши. Рост вторичных частиц осуществляется по-разному. Кинетика этих стадий зависит от условий (пересыщение, t, pH) и определяет морфологическое разнообразие образующихся цементирующих фаз, концентрацию и свойства межчастичных контактов. Интересный материал по рассматриваемому вопросу содержится в работах Тикавого [51]. [c.34]

    Присутствующие в известковом молоке мелкие кристаллы гипса при последующей нейтрализации являются центрами кристаллизации образующегося гипса и предохраняют от образования пересыщенных растворов его в нейтрализованном гидролизате. Это мероприятие имеет важное значение при последующей отгонке спирта из бражки, так как пересыщенные растворы гипса в бражке вызывают гипсацию бражных колонн и быстро выводят их из строя. Такой метод работы получил название нейтрализации с направленной кристаллизацией гипса. [c.328]

    Тщательно очищенные пересыщенные растворы выдерживают переохлаждение на десятки градусов. При отсутствии специальной очистки растворов интервал переохлаждений без возникновения центров кристаллизации составляет первые градусы. Связано это с тем, что работа образования зародышей уменьшается при кристаллизации на инородных частицах. Такое зарождение называется гетерогенным. Можно выделить по меньшей мере два типа механических примесей, уменьшающих ширину метастабильной области и соответственно повышающих вероятность возникновения излишних (паразитических) центров кристаллизации [Овси-енко Д. Е., 1975]. [c.24]

    Другим отрицательным следствием уменьшения вязкости является снижение степени ориентации расплава, поскольку уменьшаются действующие в нем напряжения сдвига. В результате обоих этих процессов (уменьшение числа центров кристаллизации и уменьшение степени ориентации) снижается температура начала кристаллизации. Внешне это проявляется в формировании неоднородной крупнозернистой даже в поверхностном слое структуры, ухудшающей механические характеристики изделий. Так, увеличение температуры расплава полиэтилена ВД со 120 до 165° С сопровождалось падением предела прочности при растяжении со 179 до 140 кгс1см В случае литья полиэтилена НД соответственно имеем при температуре расплава 150° С разрывная прочность равна 370 кгс/см , при температуре 250° С—300 кгЫсм . Аналогичные данные по влиянию температуры литья на механические характеристики термопластов приводятся и в других работах . [c.438]

    Первую фазу образования кристаллов — зарождение центров кристаллизации — ведут при температуре около 62° С, так как при более низкой температуре образуется большое количество центров, могущих дать слишком мелкие кристаллы. Зарождение кристаллов происходит в средней части колонны. Поэтому отсюда отводят тепло, чтобы смесь не нагревалась выше этой критической температуры. Чтобы обеспечить вторую фазу — рост кристаллов, следует сильнее охладить раствор, чтобы вытекающая из колонны жидкость имела температуру 28—30° С. Большая часть кристаллов выводится из колонн на фильтр, но часть оседает в ней, так что после нескольких суток колонна засоряется ими. Прежде ее останавливали и подвергали пропарке горячей водой и паром. В настоящее время процесс ведут, не прекращая работу колонны. Это осущесгвлиетси следующим образом. [c.152]

    Рбразование АК трактуется в этих работах как сочетание двух процессов конденсации кремневой кислоты на спонтанно возни- кающих в пересыщенном растворе центрах кристаллизации и последующей коагуляции микрочастиц кремнезема ЗЮг. [c.21]

    М. Л. Михельсон [32, с. 3—62] термодинамическими расчетами показал, что магнитные поля могут активировать коллоидные центры кристаллизации. Это влияет на кинетику роста кристаллов солей жесткости на намагниченных частицах магнетита. Представляется возможным обосновать полиэкстремальную зависимость эффекта воздействия от напряженности магнитного поля и экстремальную — от скорости потока (это подтверждено расчетами на ЭЦВМ). Дальнейшие опыты показали, что при одинаковом химическом составе раствора бикарбоната кальция после магнитной обработки кристаллизация на частицах магнетита происходит со значительно большей скоростью, чем на таких же частицах кальцита [19, с. 159—161]. В этой работе М. Л. Михельсон описывает один из возможных, по-видимому, частных механизмов воздействия магнитной обработки на процесс кристаллизации. [c.108]

    Однако в более поздней работе Коллинза и Лейнуибера показано, что величина критической степени пересыщения зависит от чистоты реактивов. Применяя многократную перекристаллизацию и фильтрование реактивов, они получили критическую величину степени пересыщения, равную 32. Авторы пришли к выводу, что в этом случае не происходит гомогенного образования центров кристаллизации и что кристаллизация начинается на посторонних центрах возможно, центрами кристаллизации является элементарная сера, присутствующая в растворе тиосульфата. Нильсен показал, что при тщательной очистке сосуда, в котором производится осаждение, путем длительной обработки паром, количество кристаллов сульфата бария на единицу объема уменьшается в 10 и более раз. Поэтому он пришел к заключению, что при обычных условиях осаждения большая часть центров кристаллизации образуется на стенках стеклянного сосуда. [c.148]


Смотреть страницы где упоминается термин Центры кристаллизации работа: [c.156]    [c.171]    [c.160]    [c.22]    [c.185]    [c.290]    [c.361]    [c.306]    [c.462]    [c.141]    [c.156]   
Кристаллизация из растворов в химической промышленности (1968) -- [ c.61 ]




ПОИСК







© 2024 chem21.info Реклама на сайте