Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат газовой фазы

    Классические типы колонных аппаратов — тарельчатые и насадочные. В тарельчатых контакт между жидкостью и газовой фазой осушествляется за счет многократного барботажа газа (или пара) через слой жидкости, а в насадочных — за счет стекания жидкости по элементам насадки. В обоих случаях жидкость стекает вниз под действием силы тяжести и газовая фаза движется навстречу снизу вверх. [c.136]


    При нарущениях режима работы аппарата нейтрализации могут создаваться условия для разложения аммиачной селитры и выделения в газовую фазу окислов азота (КгО, N0, ЫОд). При этом с прекращением орошения в верхней промывной части аппарата могут образовываться соли нитрита аммония, а также взрывоопасная смесь закиси азота с аммиаком, энергия инициирования взрыва которых очень низкая. [c.49]

    Процесс десорбции (регенерации) абсорбента прямо противоположен процессу абсорбции. При десорбции из насыщенного абсорбента отпариваются целевые компоненты, т. е. из жидкой фазы переводятся в газовую. Газовая фаза в десорбере создается подачей в нижнюю часть аппарата инертного газа (газа отпарки). Если счет тарелок в десорбере вести снизу вверх, а фактор абсорбции заменить фактором десорбции (отпарки) 8 = то можно получить формулу десорбции, аналогичную [c.82]

    Недостатком куба как окислительного аппарата является неполное использование кислорода воздуха. Из рис. 28 видно, что при производстве дорожных битумов содержание кислорода в газах окисления составляет 7—9% (об.), а при производстве строительных — 13—17% (об.). Повышенная концентрация кислорода в газовом пространстве куба обусловливает возможность закоксовывания стенок этого пространства и взрыва в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи водяного пара для снижения концентрации кислорода до величины, нормированной правилами техники безопасности (4% об.). [c.51]

    На рисунке 1.4 приведен реактор каталитического риформинга с радиальным движением потока установок ЛК-6У и Л-35-11/1000. Аппараты такого типа характеризуются движением газовой фазы в перфорированных желобах, установленных без интервала вертикально по внутренней стенке аппаратов. Газовая фаза движется в радиальном направлении к центральной трубе и затем отводится из аппарата/1/. [c.18]

    В ступенчато-полунепрерывных аппаратах газовая фаза непрерывно проходит через ряд последовательно или параллельно соединенных секций, в которых твердая фаза заменяется периодически. [c.404]

    Наличие в аппарате газовой фазы (горит сигнальная лампа отсутствие верхнего уровня ) [c.78]

    Сталь верх аппарата середина (под слоем катализатора) верх аппарата куб аппарата газовая фаза жидкая фаза [c.85]

    Пусть имеем (рис. 24, а) противоточный массообменный аппарат, условно разделенный на части, достаточные для установления равновесия в каждой из них, т. е. каждая часть соответствует теоретической тарелке. Из диаграммы х—у (рис. 24, б) видно, что массопередача осуществляется из газовой фазы в жидкую. Проследим за изменением концентрации целевого [c.77]


    Кроме того, для оценки эффективности процесса пользуются также отношением изменения концентрации целевого компонента в газовой фазе от входа в аппарат до выхода из него к движущей силе в нижней части аппарата. [c.79]

    Для обеспечения безопасности восстановления нитросоедине-ний водородом процесс проводят при небольшом избыточном давлении в системе. При восстановлении постоянно анализируют газовую фазу на содержание кислорода в реакционных аппаратах или на выходе из них тщательно контролируют герметичность оборудования процесс ведут строго по технологии при установленных температуре и давлении. Безопасность обеспечивается также полной автоматизацией технологического процесса восстановления, оснащением аппаратуры необходимыми средствами контроля и противоаварийной защиты. [c.120]

    Для однородной газовоздушной среды без источников зажигания (газовая фаза закрытого аппарата — без подачи в нее воздуха и при отсутствии в ней источников зажигания Кб = 2 для однородной газовоздушной среды с источниками зажигания (газовая фаза технологического аппарата — без подачи в нее воздуха при возможности появления источников зажигания) Кба — 4 для неоднородной газовоздушной среды без источников зажигания (газовая фаза закрытого аппарата, продуваемого воздухом, при отсутствии в ней источников зажигания воздушная среда цехов, взрывоопасных по газу или пару) Кв — 10 для неоднородной газовоздушной среды с источниками зажигания (воздушная среда производственных помещений категории Г и Д — при наличии в ней источников зажигания) Ка = 20, [c.362]

    Проектирование химических реакторов—одна из важнейших и труднейших задач, с которыми встречается инженер-химик. Химический реактор, помимо чисто кинетических аспектов, одновременно является и теплообменником и массообменным аппаратом, и ему часто присущи некоторые черты устройств для перемещения потоков и транспорта твердого материала. Приходится нередко обеспечивать контакт между твердой, жидкой и газовой фазами, применять мешалки и другие подобные устройства, а также вести реакцию в условиях высоких температур и давлений. Возникают серьезные проблемы, связанные с контролем процесса. Наконец, требуется самый тщательный экономический анализ, чтобы получить максимум продукции нужного качества с минимальными производственными затратами. [c.9]

    Специфической и весьма нежелательной особенностью существующих способов полимеризации этилена при низком давлении является обрастание и забивка аппаратов и трубопроводов полимером. Стенки реакторов обрастают полимерами особенно интенсивно. Отложения в зоне раздела жидкости и газовой фазы достигают толщины 100—400 мм. Эти наросты часто обрушиваются, образовавшиеся полимерные комочки забивают трубопровод выгрузки суспензии из реактора, насосы подачи суспензии на разделение. При выпуске отдельных марок полиэтилена пробег между чистками реакторов диаметром 1,3 м составляет менее 100 ч, диаметром [c.115]

    О влиянии продольного перемешивания на разделяющую способность массообменных колонн можно судить по следующему примеру [230]. Для извлечения 95% бензола из газовой фазы абсорбцией легким маслом в насадочной колонне диаметром 0,5 м при противотоке фаз требуется колонна высотой 8,5 м. При наличии продольного перемешивания в газовой и жидкой фазах, характеризуемого значениями Реж = 3,6 и Рбу = 25, та же степень извлечения может быть достигнута в аппарате высотой 25 м. [c.222]

    Промежуточный подогрев реакционной смеси осуществляется в змеевиках следующих секций печи 7. Продукты реакции по выходе из реактора 4 снизу проходят систему регенерации тепла (теплообменник 6 и водяной холодильник 8). В отличие от обычных схем разделение жидкой и газовой фаз происходит в газосепараторе 9 низкого давления (1 МПа). Газ из аппарата 9 компримируется компрессором 15 до давления 1,5 МПа, смешивается с жидкой фазой, подаваемой насосом 11, смесь охлаждается в холодильнике/5 и разделяется в газосепараторе высокого давления 12. Такая последовательность сепарации, вызванная низким давлением в реакционной зоне, уменьшает унос бензина с водородсодержащим газом и повышает содержание в газе водорода. [c.42]

    Общие выводы, касающиеся масштабирования абсорбционных колонн с насадкой, можно сформулировать следующим образом. Повышая п-кратно производительность, необходимо увеличить диаметр колонны пропорционально и сохранить постоянство отношения размера насадки к диаметру аппарата. Показатель изменения масштаба высоты колонны может изменяться в пределах от 0,4 до 0,25 в зависимости от того, оказывается ли основное сопротивление массообмену со стороны газовой фазы или со стороны жидкости. Нужно считаться с возможностью возникновения эффектов масштабирования, обусловленных нарушением подобия стекания жидкости по поверхности насадки через газ, движущийся противотоком. Важным ограничением увеличения масштаба [c.460]


    G —мольная массовая скорость потока газовой фазы на единицу поперечного сечения аппарата, кмоль-ч- м- . [c.197]

    Флорентийские (разделительные) сосуды. Служат для разделения двух несмешивающихся жидкостей. После расслаивания через нижний штуцер сливается более тяжелая жидкость, а через боковые штуцера — легкая. Фазоразделители используют для разделения жидкой и газовой фаз. Они представляют собой небольшие емкостные аппараты, в которых газожидкостная смесь расслаивается, что дает возможность разделить ее на два потока. [c.119]

    При выборе конструкции- рабочих (контактных) элементов колонных аппаратов необходимо считаться с такими факторами, как гидравлическое сопротивление, диапазон изменения расходов по жидкой и газовой фазе, при котором аппарат работает устойчиво (диапазон должен быть достаточно широким) простота конструкции и надежность в эксплуатации. [c.136]

    В рабочих элементах колонных аппаратов, работающих в скоростных режимах, осуществляется прямоток жидкости и газовой фазы, поэтому после каждого элемента необходимо производить сепарацию брызг. [c.152]

    АППАРАТЫ ДЛЯ КОНТАКТНО-КАТАЛИТИЧЕСКИХ И ВЫСОКОТЕМПЕРАТУРНЫХ ПРОЦЕССОВ В ГАЗОВОЙ ФАЗЕ [c.202]

    Периодическидействующий реактор полного перемешивания. Реакторы периодического действия используются в промышленности почти исключительно для проведения реакций в жидкой фазе или гетерогенных процессов с участием жидкости. Это типовые аппараты для малотоннажных производств, с которыми приходится иметь дело, например, в фармацевтической промышленности. В случае процессов в газовой фазе реакторы периодического действия находят применение главным образом для лабораторных исследований кинетики реакций. [c.299]

    К аппаратуре для контактно-каталитических и термических процессов в газовой фазе относят аппараты для процессов каталитического окисления, гидрирования, хлорирования и ряда других газовых реакций, идущих в присутствии катализатора. Контактные аппараты делят на аппараты с неподвижным и движущимся слоем катализатора. Аппараты с неподвижным слоем, в свою оче-ред >, подразделяются на адиабатные н аппараты с теплообменом. [c.202]

    Предложено последовательное окисление в системе трубчатый реактор — испаритель. В отличие от обычной схемы работы трубчатого реактора воздух подается в испаритель, работающий в этом случае как пустотелая колонна. Промышленное испытание такой схемы показало возможность ее осуществления [2]. Однако экономически это нецелесообразно, так. как обычная пустотелая колонна, являющаяся менее эффективным аппаратом, чем трубчатый реактор, используется на конечной стадии процесса, где окисление идет труднее. Кроме того, на действующих блоках трубчатых реакторов с определенной-пропускной способностью по газовой фазе подача воздуха в испаритель приведет к нарушению режима его работы или потребует ограничения подачи воздуха в трубчатый реактор. [c.67]

    Предупреждение закоксовывания аппаратов. При производстве окисленных битумов наблюдается закоксовывание стенок газового пространства окислительных систем (выше уровня раздела фаз) и линий снижается пропускная способность по газовой фазе и, следовательно, производительность окислительных аппаратов, повышается давление в системе. Последнее наряду с известной способностью коксовых отложений самовозгораться [56] увеличивает опасность процесса. Особенно сильное. закоксовывание наблюдается в испарителях трубчатых реакторов, которые приходится чистить примерно раз в квартал [95]. В отдельных случаях (при частых нарушениях гидравлического режима окисления) наблюдается закоксовывание и трубчатого реактора, причем здесь отложение кокса интенсивнее протекает в трубах нисходящего потока [54]. [c.178]

    Фракционный состав глин играет определенную роль в процессе сернокислотной активации и в технологии их применения. Мелкие частицы медленно оседают и в процессах промывки суспензии часть частиц в виде мути и взвеси уносится с водой в канализацию, а из реакционных аппаратов каталитических установок — вместе с дымовыми газами в атмосферу. Это обусловливает большие потери катализатора. Глина, состоящая из крупных дисперсных частиц, в процессе промывки от остаточной кислоты после химической активации оседает полностью и быстрее, а в каталитических процессах и при их регенерации способствует более быстрому оседанию частиц из паровой и газовой фаз. [c.72]

    Математическую модель нестационарного процесса абсорбции в насадочном аппарате построим так, чтобы она отражала три основных фактора, наиболее важных в общем динавлическом поведении процесса 1) неравномерность распределения по времени пребывания элементное потока в аппарате, 2) распределенность в пространстве и времени основных гидродинамических параметров процесса удерживающей способности, расхода жидкости в колонне, перепада давления, 3) наличие полной замкнутой цепи обменных процессов в насадочном аппарате газовая фаза—проточная зона потока жидкости—застойная зона потока жидкости—газовая фаза с количественным выражением интенсивности обменных процессов всех звеньев замкнутой цепи. [c.415]

    Перед пуском обслуживающий персонал должен убедиться в исправности электрооборудования (выпрямитель, высоковольтный кабель, изоляторы, электроды), контрольно-измерительных приборов (манометры, регуляторы раздела фаз) и регулятора верхнего уровня, блокирующего высокое напряжение в случае появления в аппарате газовой фазы. Особое внимание перед пуском следует уделить внутреннему осмотру электроразделителя, проверить правильность монтажа, убедиться в отсутствии в аппарате посторонних предметов. Необходима тщательная проверка проходного и подвесных изолято- [c.75]

    В точке С, на выходе из первой теоретической тарелки, газовая фаза с концентрацией целевого компонента ур встречается с жидкой фазой, концентрация целевого компонента в которой х1<х . И вновь начинается переход целевого компонента из газовой фазы в жидкую до установления нового равновесия. Повторив описанные построения, получим треугольник СРЕ, соот1зетствуюш,ий второй теоретической тарелке, и т. д. Число треугольников, построенных таким образом между рабочей и равновесной линиями от точки В до точки А, соответствует обш,ему числу теоретических тарелок массообменного аппарата. Число теоретических тарелок зависит от расстояния между рабочей и равновесной линиями, т. е. от двил- ущей силы массообменного процесса Ау и Ах. Чем меньше расстояние между рабочей и равновесной линиями, тем меньше движущая сила процесса, тем больше требуется ступеней контакта фаз, т. е. тем больше требуется теоретических тарелок. [c.78]

    Известен случай взрыва при использовании цианплава в качестве полупродукта для получения синькалия. Цианплав засыпали через открытый люк в аппарат-растворитель. Во время очередной загрузки цианплава в растворителе произошел взрыв. Силой взрыва оторвало крышку люка, разрушило коммуникации, подводящие к аппарату пар и воду рабочий, загружавший цианплав, был тяжело травмирован. Причина взрыва — образование ацетилено-воздушной смеси в газовой фазе растворителя, что обусловлено повышенным -содержанием в загруженном цианплаве остаточного карбида кальция. Взрыву способствовало нарушение режима загрузки не было создано давление водяного пара в газовой фазе, исключающее возможность попадания в аппарат воздуха. Импульсом взрыва послужила искра от удара железного барабана, из которого засыпали цианплав, об открытый люк крышки растворителя. [c.73]

    Затем кислый аль-доль подается на крото-низацию в кротониза-ционную колонну.Здесь при температуре около 130°С и давлении 3,25 ат в присутствии уксусной кислоты происходит дегидратация альдоля с образованием кротонового альдегида. Последний в виде водного азео-тропа выделяется на отпарной колонне и после отделения от воды направляется на гидрирование. Гидрирование ведут в газовой фазе в трубчатых контактных аппаратах в присутствии медного катализатора. Конверсия кротонового альдегида в к-бу-ТИЛ0ВЫ11 снирт осуществляется при 160° С и 12-кратном избытке циркуляционного водорода. Экзотермическое тепло отводится испарением парового конденсата в межтрубном пространстве аппарата гидрирования. [c.66]

    Реакция сополимеризации проводится в реакторе /, частично заполненном реакционной массой. Температура полимеризации обычно 20—40 °С, давление 0,3—0,6 МПа. В реактор поступает растворитель, мономеры, компоненты каталитического комплекса, а также циркулирующая газожидкостная смесь. Газовая фаза, содержащая этилен, пропилен, регулятор молекулярной массы и растворитель в количествах, определяемых динамическим равновесием между газом и жидкостью в реакторе, непрерывно выводится из аппарата и подается в конденсатор 2, где происходит ее охлаждение и частичная конденсация. Раствор полимера из реактора поступает в смеситель <3 для разрушения каталитического комплекса и смешения с водой. Иногда этой операции предшествует отдувка незаполимеризовавшегося этилена за счет снижения давления. Из смесителя < эмульсия раствор полимера — вода переводится в отстойник 4 для разделения водного и углеводородного слоев. Водный слой, содержащий продукты разрушения катализатора, подается на очистку, а частично после смешения со све- [c.306]

    Нар.яду с перечисленными преимуществами процесс псев-доожпжения имеет и свои недостатки и особенности невозможность противотока фаз в пределах одного слоя вследствие интенсивного перемешивания, неравномерность времени пребывания в аппарате твердых частиц и газовой фазы, необходимость устройства систем пылеулавливания, ограничение скоростей газа интервалом допустимых скоростей псевдоожижения. Значительные трудности встречаются при обработке в псевдоожиженном слое слипающихся или механически непрочных продуктов. [c.177]

    Процессы, в которых основой является жидкая фаза, проводятся в аппаратах емкостного, колонного и змеевикового типа. Аппараты емкостного типа применяют в основном для периодических процессов. Они, как правило, имеют исремеп]ивающие устройства. Колонные реакторы применяют для непрерывных процессов. Для непрерывных. химических реакций в жидкой (а иногда и в газовой) фазе применяют также змеевиковые апг[араты, в которых реагенты с большой скоростью движутся по петлевому змеевику, имеющему теплообменньге рубашки. [c.203]

    Ими показано, что при близком к захлебыванию режиме подвисания в аппарате создаются наиболее благоприятные условия массонередачи между жидкой и газовой фазой вследствие возрастания толщины жидкостной пленки на кольцах насадки, увеличения степени их смоченности и более равномерного распределения жидкости, а также вследствие изменения других условий, способствующих интенсивному массообмену (увеличение скорости газа, падение диффузионного сопротивления граничащего с газом слоя жидкостной пленки, возникновение волн и вихрей на ее поверхности и др.). [c.18]

    Применительно к битумному производству указывается, что слишком большой расход воздуха вызывает коалесценцию пузырьков и образование больших масс недиспергированного воздуха, который проходит через аппарат, не контактируя с жидкой фазой [И]. Прорыв воздуха происходит, вероятно, по центру колонны, так как известно [79], что восходящее движение жидкости (обусловленное движением газа, поскольку именно газовая фаза является движущей силой перемешивания) в барботажном суюе имеет место в средней адсти колонны (нисходящее — у стенок) и максимальная скорость подъема наблюдается, в общем, по оси колонны [79], хотя центр восходящего потока н блуждает в поперечном сечении [80]. Отмечалось, что уже в диапазоне нагрузок по воздуху 2,4— 3,9 м /(м -мин) увеличение нагрузки ухудшает степень использования кислорода воздуха [2, 81]. На практике это привело к ограничению нагрузки по воздуху до величины 4 м (м -мин) [74, 82]. Однако проведенный нами дополнительный анализ экспериментального материала показал, что заключение о снижении степени использования кислорода в указанных условиях является спорным, так как разница в результатах определения [c.58]

    Для уточнения некоторых расчетно-технических показателей циркуля-н,ии катализатора в системе аппаратов и коммуникации установок каталитического крекинга (стояк — подъемный катализаторопровод — распределительная решетка — кипящий слой катализатора) проведены исс,ледоиапия на укрупненной установке. Катализатором служил гумбрин заводского помола с относительной плотностью 2,26 и насыпной массой 0,780 г/см следующего фракционного состава (мм) 0,240—0,147 (1 %) 0,147—0,104 (2,6 %) 0,104— 0,074 (9,2 %) 0,074—0,035 (34 %) свыше 0,035 (53,1 %). В качестве газовой фазы принят воздух при температуре порядка 150 [c.164]

    VI-1-1. Физическая абсорбция и очень медленные реакции. В этих случаях количество растворенного газа, реагирующее в абсорбере, равно нулю или значительно меньше количества, абсорбированного физически и вынесенного из аппарата потоком жидкости в непрореа-гировавшем виде. Скорость абсорбции при отсутствии сопротивления со стороны газовой фазы равна [c.154]


Смотреть страницы где упоминается термин Аппарат газовой фазы: [c.34]    [c.2]    [c.78]    [c.160]    [c.381]    [c.177]    [c.199]    [c.194]    [c.164]    [c.164]   
Техника физико-химических исследований при высоких давлениях (1958) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза



© 2025 chem21.info Реклама на сайте