Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен структура

    Селективная способность — одно из наиболее замечательных свойств цеолитов. В отличие от обычных катализаторов, цеолиты имеют два типа пор одни определяются размерами пор кристалла цеолита, другие — внутрикристаллической системой, существующей и в промышленных катализаторах крекинга. В зависимости от кристаллической структуры и формы пор цеолиты обеспечивают высокую селективность (избирательность) каталитического крекинга. Например, цеолиты с маленькими порами (4 и 5 А для типа А) эффективны в реакциях, в которых участвуют реагенты с небольшими размерами молекул такие цеолиты избирательно действуют только на пропилен, если, например, он находится в смеси с изобутиленом. При селективном крекинге смеси парафиновых углеводородов на цеолитах, размер пор которых ненамного превышает 5 А, крекинг изопарафинов незначителен. При каталитическом крекинге с использованием цеолитов типа X и У, диаметр пор которых от 9 до 10 А, углеводородные молекулы частично крекируются на внешней поверхности кристалла цеолита, а образующиеся фрагменты подвергаются дальнейшему крекингу внутри полостей. [c.101]


    При увеличении молекулярной массы мономера, как уже отмечено, константы равновесия димеризации уменьшаются до некоторого значения, которое становится постоянным для олефинов Сб и выше. Расчет равновесия димеризации высших олефинов проводится по приведенным выше соотношениям. Поскольку, однако, для таких олефинов резко возрастает число возможных образующихся димерных структур, иллюстративные модельные расчеты несут мало информации. Целесообразно выполнение расчета для конкретных условий димеризации с учетом структур образующихся димеров, так как, подобно ситуации с пропиленом, в зависимости от числа образующихся димеров конверсия может меняться в несколько раз. [c.250]

    На основании полученных ранее экспериментальных данных было высказано мнение, что реакция алкилирования бензола олефинами протекает по электрофильной схеме замещения с промежуточным образованием карбокатионов. Изменение условий экспериментов, природы катализаторов, структуры и длины цепи алкилирующего олефина влияет на соотнощение скоростей реакций алкилирования и изомеризации и тем самым определяет изомерный состав целевых продуктов. В данном разделе будут рассмотрены пути перераспределения изотопной метки О между компонентами реакции алкилирования в зависимости от условий. Для уточнения механизма взаимодействия ароматических углеводородов с олефинами проведено алкилирование дейтеро-обогащенного бензола этиленом, пропиленом, бутеном-1 и буте-ном-2 (табл. 4.2). Полученные алкилбензолы после разделения на препаративном хроматографе анализировали методами ИК-, масс- и ПМР-спектроскопии. [c.89]

    Поскольку в цеолитах для каждого катиона имеется два размера пор, полостей и окон, то при введении их в алюмосиликат регулярность структуры катализатора повышается. При этом можно получить желаемый преимущественный размер пор и таким способам повысить селективность катализатора. Так, если катализатор содержит цеолит типа А, размер его пор не превышает 4—5 А. В такие поры свободно проникает пропилен и не проходит изобутилен. Поэтому на таком катализаторе можно селективно проводить реакцию полимеризации пропилена, находящегося в смеси с изобутиленом. Из цеолитов с порами размером несколько больше 5 А можно получать катализаторы для селективного крекинга парафинов нормального строения, находящихся в смеси с изопа-рафиновыми углеводородами. Последние лишь незначительно подвергаются крекингу [35]. [c.55]

    По сравнению с этиленом пропилен и высшие углеводороды обладают меньшей склонностью к полимеризации. Однако проф. Натта удалось разработать серию катализаторов, под действием которых пропилен и высшие алифатические углеводороды полимеризуются с образованием кристаллических полимеров, отличающихся хорошей упорядоченностью расположения структурных единиц. Так, например, порядок расположения атомов углерода в каждом звене Hg изотактического полипропилена совершенно одинаков. На рис.2 показана упорядоченная структура такого полипропилена. [c.120]


    Мономерами являются этилен, пропилен, бутены, бутадиены и стирол. Полиэтилен, полипропилен и полистирол — полимеры, в которых базовая молекулярная структура мономера повторяется в виде длинной цепи подобных структур. Например, моно-и полимер этилена можно записать так  [c.252]

    Пропилен образует производные, по молекулярной структуре равноценные получаемым из этилена (например, окись пропилена), однако способ их получения и природа конечных продуктов другие. [c.254]

    Гидродинамика газовых потоков в вихревом реакторе определяет условия течения реакции хлорирования, несмотря на ее скоротечность. Действие поля центробежных сил и устойчивость струйной структуры позволяет усилить положительный эффект реакции и свести к минимуму выход побочных продуктов, образование которых обусловлено более длительным временем контактирования хлора с пропиленом и хлористым аллилом. Перемещения молекул С1г И С3Н, не тормозят процесс реакции. Скорости реакции хлорирования можно определить по формуле (при Тр = 773 К) [c.260]

    Вместе с тем, на потенциал ионизации этиленовых углеводородов влияют не только величина, но и положение радикала относительно двойной связи [300]. При увеличении числа метильных групп в молекуле в ряду этилен, пропилен гр<знс-бутен-2, З-метилбутен-2 и 2,3-диметилбутен-2 наблюдается правильное падение потенциала ионизации. Симметричные структуры обладают более низким потенциалом ионизации так изобутилен, цис-бутен-2, транс-бутен-2 ионизуются, соответствеино, при 9,35 9,31 и 9,29 в. Введение в молекулу этилена этильных и пропильных радикалов вызывает более значительное снижение потенциалов ионизации по сравнению с метильным, но фактор симметрии в этом случае играет определенную роль гранс-гексен-З (9,12 в), как более симметричный, чем 2-этилбутен-1 (9,23 в) имеет более низкий потенциал ионизации. [c.181]

    Химизм полимеризации пропилена на фосфорнокислотном катализаторе чрезвычайно сложен [21 ]. Пропилен полимеризуется по механизму, основанному на образовании ионных промежуточных продуктов. Реакция полимеризация сопровождается рядом побочных реакций. Кроме ди-, три-, тетра- и пентамеров пропилена различного строения и более высокомолекулярных полимеров, в конечном счете образуются осколки молекул с 4 и 5 атомами углерода, из которых ири участии пропилена и его полимеров получают олефины, содержащие 7—15 и более углеродных атомов в молекуле, т. е. возможно получить почти весь гомологический ряд олефинов с различными изомерами. Хотя полимеры пропилена чрезвычайно сложны по структуре, они представляют собой почти 100%-ные олефины [21 ] и в них присутствуют лишь следы ароматических, предельных и диолефиновых углеводородов. [c.405]

    Для регулирования молекулярной массы и структуры полиэтилена в этилен, поступающий на полимеризацию, вводят модификаторы -агенты передачи цепи. Механизм действия модификаторов рассматривается в гл. 4. В качестве модификаторов чаще всего используют пропан, пропилен, изопропиловый спирт, а также другие вещества, имеющие подвижные атомы водорода и высокое значение константы передачи цепи. [c.37]

    Влияние молекулярной структуры на относительное удлинение при разрыве и истинную прочность исследовалось в работе [153]. Авторы сравнивали образцы ПЭВД, имеющего большое число коротких ветвей при наличии длинных, с образцами промышленного ПЭНД, представляющего собой линейный полимер с незначительным числом коротких ветвей, и сополимера этилена с пропиленом (СЭП), моделирующего линейный полиэтилен, близкий по содержанию коротких ветвей к ПЭВД. ММР образцов сравнительно близки. Это позволило проследить влияние разветвленности на механические свойства. [c.151]

    Следующим представителем класса алкенов является пропилен С Н . По аналогии с этиленом ему можно приписать структуру с двойной угле-род-углеродной связью. Начав с двух атомов углерода, соединенных двойной связью, и присоединив другие атомы, согласно правилу (одна связь для водорода н четыре связи для углерода), получаем структуру [c.146]

    Затрудненное вращение существует вокруг любой двойной углерод-углеродной связи, но оно вызывает геометрическую изомерию только при определенном расположении групп, связанных с углеродными атомами двойной связи. Чтобы обнаружить этот тип, следует написать возможные структуры (или, лучше, построить их молекулярные модели) и затем выяснить, являются ли они изомерами, или они идентичны. Из рассмотрения структурных формул следует, что пропилен, бутен-1 и изобутилен не могут проявлять изомерии этот вывод соответствует экспериментальным фактам. Очевидно, что многие высшие алкены могут существовать в виде геометрических изомеров. [c.148]

    Рассмотрим устойчивость свободного аллильного радикала. Для этого сравним две реакции диссоциацию метана с образованием метильного радикала и диссоциацию пропилена с образованием аллильного радикала. Как можно объяснить тот факт, что различие в энергиях между пропиленом и аллильным радикалом на (102 — 77) = 25 ккал (104,67-10 Дж) меньше, чем различие между энергиями метана и метильного радикала Рассмотрим структуры этих радикалов. [c.377]

    Метан, метильный радикал и пропилен могут быть удовлетворительно представлены каждый одной структурой (гиперконъюгация в пропилене не важна по сравнению с рассматриваемыми эффектами). [c.377]

    В зарубежной структуре потребления этилена на долю производства полиэтилена приходится 50,1%, этиленоксида и этиленгликоля— 12,3%, этилбензола — 8,0% хлорвинила—18,5% и прочих продуктов—11,1%. В структуре потребления пропилена за рубежом производство полипропилена занимает 31,3%, акрилонитрила—15,4%, изопропилбензола — 8,4%, пропилен-оксида и пропиленгликоля—11,8% и прочих продуктов —33,1 % [16, 17]. [c.9]


    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]

    Адсорбируемость веществ зависит от их природы, строения молекул, а также от природы и структуры адсорбента (величины удельной поверхности, размеров пор). Адсорбируемость углеводородов обычно возрастает с увеличением их молекулярной массы, однако значительное влияние на нее оказывают структура и размеры молекул. Так, парафиновые и нафтеновые углеводороды поглощаются в меньшей степени, чем ароматические. Сернистые соединения лучше сорбируются, чем содержащие их парафиновые и нафтеновые углеводороды. Непредельные низкомолекулярные углеводороды (этилен, пропилен) адсорбируются лучше, чем соответствующие их предельные аналоги (этан, пропан). [c.21]

    Достоин упоминания метод [61] получения блоксополнмеров этилена с пропиленом, структуру которых можно представить так  [c.59]

    В системах хлор — этилен и хлор — бутилен интермедиат имеет мостиковую структуру, а для системы хлор — пропилен структура открытого хлорониевого иона более предпочтительна. Мостиковая и открытая формы интермедиата находятся в состоянии динамического равновесия [12]  [c.16]

    Из изобутилена, подобно этилену и пропилену, можио получить полимер. Какова структура полимера Возможна ли г> этом случае стереоспецпфическая полимеризация  [c.275]

    Под давлением и нри температурах от 25 до 125° С получаются жидкие продукты, которые в зависимости от времени реакции и количества катализатора колеблются от бензина до масляных фракций. Бензин, выкипающий до 200° С, сильно насыщен и имеет октановое число смешения 77 [621], что указывает на присутствие разветвленных структур высококипящие порции содержат нафтеновые углеводороды. Очевидно, образование циклов наиболее легко происходит при полимеризации более низкомолекулярных олефинов. Никто не сообщал о подобных реакциях с амиленом и октеном [622, 623], так же как и с пропиленом, который в деструктивном алкилировании дает нормальный гептан [624] или гексадецилен [625, 626]. [c.140]

    Окись углерода и водородный атом могут присоединяться с любой стороны двойной связи. Так, пропилен нри оксосинтезе образует смесь, состоящую на 60% из нормального и на 40% — из изомасляного альдегида. Олефпн с двойной связью как в конце, так и в середине молекулы, например пентен-1 или пентен-2, дают практически одинаковое распределение альдегидов Сд нормального и изомерного строения. Это свидетельствует о том, что происходит быстрая изомеризация. Незначительно разветвленные структуры присоединяют СО главным образом к крайнему углеродному атому изобутилен образует 95% изовальерьянового альдегида и только 5% триметилацетальдегида. [c.579]

    Для непластицирующихся полимеров вязкость смеси определяется молекулярным строением исходных каучуков. Ньютоновская вязкость линейных полимеров при равной молекулярной массе увеличивается в ряду сополимер этилена с пропиленом > > цис-полнбутадиен > цис-полиизопрен. Однако многочисленные экспериментальные данные показывают, что течение большинства высокомолекулярных эластомеров не является ньютоновским их вязкость уменьшается при повышении скорости или напряжения сдвига. Этот эффект выражен тем сильнее, чем шире ММР и больше средняя молекулярная масса данного эластомера. Наличие разветвленных макромолекул и гетерогенных структур (полимерных частиц) усиливает влияние скорости сдвига на вязкость. При этом в области малых скоростей сдвига вязкость таких полита б л и ц а 1 [c.78]

    С целью уменьшения кристалличности политетрафторэтилена были проведены работы по сополимеризации тетрафторэтилена с гексафторпропиленом. Однако в отличие от этилен-пропиленового каучука его перфторированный аналог оказался пластичным материалом, хотя и способным в отличие от политетрафторэтилена переходить при нагревании в вязкотекучее состояние. Одной из причин этого является трудность получения сополимера, содержащего в цепи большие количества звеньев гексафторпропилена, достаточные для нарушения упорядоченности кристаллической структуры. Это объясняется тем, что по скорости полимеризации тетрафторэтилен в гораздо большей степени превосходит гекса-фторпропилен, чем этилен превосходит пропилен. [c.502]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    Метан и углеводороды Сз образуют газовые гидраты структуры первого типа, а изобутаи и пропилен гидраты состава М-ПНгО, что соответствует заполнению только больших полостей структуры второго типа. Бутан и высшие гомологи с максимальным размером молекул больше 0,69 нм не участвуют в процессе гидратообразования. Возможно образование смешанных газовых гидратов, в которых в кгчестве гидратообразователей выступают молекулы различных соединений. [c.118]

    Алкилирование пропиленом о-ксилола при невысоких температурах и малом времени контакта приводит к преимущественному (на 95—98%) образованию 1-изопроп1ил-3,4-диметилбензола, а алкилирование м-ксилола дает в основном 1-изопропил-2,5-ди-метилбензол [16]. Изомерный состав продуктов алкилирования в известной мере определяется и влиянием стерических препятствий, которые делают термодинамически менее выгодным образование орто-замещенных в случае заместителей с разветвленной структурой. Так, при алкилировании толуола пропиленом и эта- [c.24]

    Взаимодействие между хлором и пропиленом могло происходить только на поверхности струй, струйный характер течения обеспечивал сохранение данной структуры по всей длине реактора. В результате взаимодействия образуется хлорпропен, имеющий значительно больший молекулярный вес. Высокий уровень поля центробежных сил способствует быстрому диффундированию молекул хлорпропена через пропилен к стенкам реактора, что обеспечивает непрерывное обновление зоны контакта хлора и пропилена и поддерживает заданное соотношение между реагентами. [c.255]

    В формировании природных полимеров принимают участие соответствуюш,ие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были най-дены совершенные катализаторы синтеза, получали полимеры с нерегулярной структурой, малой молекулярной массой и вследствие этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство этих полимеров в природе не существует, [c.13]

    В случае олефинов с более длинной цепью, например с пропиленом, эти катализаторы обычно дают высокоплавкие продукты со стереоре1улярнои структурой [138, 139, 141]. [c.247]

    Метан и углеводороды Сг образуют газовые гидраты со структурой первого типа, а изобутан и пропилен гидраты состава М- 17Н2О, что соответствует заполнению только больших полостей структуры второго типа. Бутан и высшие гомологи с максимальным размером молекул больше 0,69 нм не участвуют в процессе гидратообразования. [c.89]

    Использование в качестве инициаторов хлорирования УФ- и особенно Y-излyчeния дает возможность получить ХПВХ, обладающий благодаря упорядоченной структуре более высокими теплостойкостью и температурой размягчения [61]. Такой ХПВХ не менее чем на 80% состоит из блоков 1,2-дихлорэтилена с правильно чередующимися группами. Трехмерные сшитые структуры практически отсутствуют. В качестве инициаторов предлагается также использовать 0,01—1% непредельных соединений (этилен, пропилен, трихлорэтилен, перхлорэтилен и т. д.). Хлорирование проводят в течение 30—60 мин при 100—110°С в хлорбензоле. Получаем мая перхлорвиниловая смола используется для покрытий [64]. [c.13]

    Параметры уравнений Бенедикта — Уэбба — Рубина и других связанных с ними уравнений могут быть использованы и как специфические, и как обобщенные. Некоторые наиболее точные модификации уравнения Бенедикта — Уэбба — Рубина были распространены [180] на этилен и пропилен, как жидкий, так и газообразный, а для описания ряда других веществ были применены аналогичные уравнения. В работе [303] приведены экспериментальные данные и осуществлен критический разбор уравнений состояния для неона при очень низких температурах. В разд. 1.4 содержатся многочисленные данные о втором и более высокого порядка вириальных коэффициентах. Воксменом и Девисом (1979) выполнены точные измерения вириального коэффициента для этилена при низких температурах, а ГУдвином (1979) разработано сходное по структуре с уравнением Битти — Бриджмена уравнение состояния, параметры которого приложимы к пропану. [c.87]


Смотреть страницы где упоминается термин Пропилен структура: [c.413]    [c.67]    [c.17]    [c.127]    [c.58]    [c.247]    [c.54]    [c.9]    [c.121]    [c.548]    [c.151]    [c.228]    [c.281]    [c.228]    [c.215]    [c.23]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.54 , c.496 ]




ПОИСК







© 2025 chem21.info Реклама на сайте