Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочных металлов энергии связи

    Физические свойства. Поскольку в атомах щелочных металлов один внешний электрон приходится на 4 и более свободные орбитали, а энергия ионизации атомов низкая, то между атомами металлов возникает металлическая связь (с. 150). Поэтому они обладают металлическим блеском, весьма пластичны, мягки, хорошо проводят электрический ток и теплоту. Такими свойствами обладают натрий и калий. [c.170]


    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице 18 стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов. [c.81]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]

    С увеличением межъядерного расстояния энергия связи в молекулах уменьшается. Примером может служить уменьшение энергии диссоциации двухатомных молекул галогенов от С1г к Вгг, Ь, г также, как указывалось выше (см. 5.2), молекул щелочных металлов. Это связано с понижением в том же направлении плотности электронного облака в молекулах, которая, естественно, должна уменьшаться с увеличением размеров атомов. [c.100]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Катионы или анионы, имеющие слабую энергию связи со своими соседями, вытесняются в поверхностный слой. В шлаках к таким компонентам относятся катионы щелочных металлов, фосфора, [c.82]

    Дебаевская температура теплоемкости меньше, чем у графита вследствие более прочной энергии связей межд у слоями за счет возникающего взаимодействия зарядов углеродных слоев с ионами щелочных металлов. С ростом ступени внедрения эта величина растет и в пределе приближается к дебаевской температуре графитовой матрицы. [c.274]

    Увеличение работы адсорбции фактически означает увеличение энергии связи адсорбированного водорода с поверхностью платины с ростом pH раствора и является результатом дипольного характера связи Р1—Наде, приводит К электростатическому взаимодействию между ионами двойного электрического слоя и указанными диполями. В кислых растворах в области средних и малых заполнений по-. верхности адсорбированным водородом двойной электрический слой образован положительными зарядами металла и отрицательными зарядами анионов раствора. В щелочных растворах, как показывают адсорбционные данные, во всей области потенциалов двойной электрический слой образован отрицательными зарядами металла и катионами раствора. Если учесть, что диполь Р1—Н дд в области малых и средних заполнений поверхности обращен отрицательным концом к раствору, то, очевидно, присутствие анионов в двойном слое будет ослаблять энергию связи водорода с платиной, а присутствие катионов — ее увеличивать. [c.192]

    Способность элементарных веществ испускать электроны под воздействием электромагнитных волн — фотоэлектрический эффект — характерна для металлов. В этом случае она объясняется слабостью связи валентных электронов в атомах. Чем слабее связаны электроны в атомах, тем меньшая энергия кванта излучения требуется для их отрыва. В соответствии с этим фотоэлектрический эффект легче всего осуществляется у щелочных металлов, которые испускают электроны под воздействием не только ультрафиолетовых, но даже и длинноволновых лучей видимого света. [c.45]


    Остановимся на порядке заполнения этих орбиталей. При объединении двух атомов Li два 25-электрона заполняют одну aj -op-биталь, и, таким образом, образуется устойчивая молекула Lia-Энергия связи невелика, что характерно для щелочных металлов, не очень прочно удерживающих свой внешний электрон. Тем не менее здесь присутствует нормальная о-связь. Из атомов бериллия молекула Вез образоваться не может, так как каждый атом Ве имеет на 25-орбиталях по два электрона и при сближении они попадают попарно на связывающую и разрыхляющую орбитали, т. е. в итоге связывания не происходит. Два атома бора могут объединяться в моле- [c.63]

    Приведенные данные показывают, что ряд свойств как физических, так и химических закономерно изменяется с возрастанием порядкового номера элемента и увеличением числа застраиваемых электронных слоев п в атоме (соответственно номеру периода, в котором расположен данный щелочной металл). Так, радиус атома возрастает, а энергия ионизации падает. В связи с этим химическая активность повышается от Ы к Сз и Рг. Это отчетливо проявляется в процессе окисления металла. Так, литий сравнительно стоек, а, например, цезий самовоспламеняется на воздухе. Литий спокойно взаимодействует с водой, калий при этом самовоспламеняется, а у цезия реакция идет со взрывом. Наиболее активен щелочной металл франций, энергия ионизации его атома наименьшая (3,98 эв). Электролитическая диссоциация гидроксидов ЭОН (щелочей) возрастает в той же последовательности (от ЫОН к СзОН и РгОН). [c.404]

    В решетке ионных кристаллов — чисто ионная связь, т. е. связь, для которой полный перенос электронов от катиона к аниону скорее исключение, чем правило. Лишь для кристаллов типа хлорида натрия можно говорить о полном переносе заряда. Интеграл перекрывания одноэлектронных орбиталей ионов натрия и хлора оценивается значением —0,06. Можно сказать, что это чисто ионная связь. По отношению к этому же соединению сопоставление энергии электростатического взаимодействия с энергией ковалентного взаимодействия (непосредственно связанной с тем,-что называют поляризацией электронной оболочки) показывает, что вклад электростатического взаимодействия значительно больше и составляет (по Коулсону) для хлорида натрия 8,92 эВ, в то время как соответствующее значение для ковалентного взаимодействия 0,13 энергия отталкивания в этом случае равна —1,03 эВ (энергия, называемая нулевой , т. е. нулевая колебательная энергия, равна всего —0,08 эВ и ее часто вообще не принимают в расчет). К ионным кристаллам относятся кроме соединений типичных галогенов со щелочными металлами также и некоторые оксиды, в частности оксиды кальция и магния, в которых по экспериментальным данным имеются отрицательные двухзарядные ионы кислорода. В большинстве случаев ковалентный вклад больше. Кристаллы алмаза, кремния, германия, карборунда, серого олова содержат прочные ковалентные связи, так что любую часть этих веществ вполне и без всяких оговорок можно рассматривать кан молекулу макроскопических размеров. [c.281]

    Ионная связь обусловливает образование ионных кристаллов, а также ионных молекул, существующих в парах ионных соединений. Она является следствием электростатического притяжения противоположно заряженных ионов и возникает между атомами, сильно отличающимися потенциалом ионизации и сродством к электрону. Наименьшим потенциалом ионизации обладают атомы щелочных металлов. Отдавая свой внешний электрон, эти атомы превращаются в одновалентные катионы, электронная оболочка которых подобна оболочке атомов инертных газов. Наибольшей энергией сродства к электрону обладают атомы галогенов. Достраивая свою электронную оболочку, эти атомы становятся одновалентными анионами. [c.114]

    Длина связи определяется расстоянием между центрами атомов, которые образуют данную связь. Сближение атомов ограничено возрастанием межэлектронного и межъядерного отталк вания. Длины связей находятся в зависимости от размера атомов, образующих молекулу. Например, межъядерные расстояния в ряду двухатомных молекул щелочных металлов . 2, N32, Ка, КЬг и Сза увеличиваются, энергии диссоциации уменьшаются. [c.96]

    Энергия связи в некоторых двухатомных молекулах щелочных металлов и халькогенов  [c.109]

    Помимо воды, входящей в состав оксидов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью или ван-дер-ваальсовыми адсорбционными силами [303]. Тип связи воды с поверхностными атомами металла зависит от природы и металла, и электролита. Так, в кислой или нейтральной среде поверхность железа несет на себе положительный заряд, и можно ожидать электронодонорного взаимодействия воды с этой поверхностью. В щелочной среде или при недостатке НзО+-ионов вблизи электродов предпочтительна ориентация воды в двойном слое атомами водорода к поверхности металла. Следовательно, энергия связи воды с поверхностью металла может изменяться в широком интервале — от химической связи до слабой водородной или ван-дер-ваальсовой. [c.292]

    Лишь в редких случаях молекулы исходного вещества реагируют непосредственно. Примером такой непосредственной реакции может служить реакция распада Иодистого водорода. При столкновении двух молекул иодистого водорода, обладающих достаточной энергией и соответственно взаимно ориенти рованиых, происходит разрыв связей Н—J и возникновение новых связей между атомами водорода и иода с образованием молекулярного водорода и иода. Примером реакций, для которых известны все элементарные процессы, т. е все промежуточные химические реакции, могут служить реакции между парами щелочных металлов и галогенов (так называемые ре-акции в разреженном пламени, см. гл. IV, 8). [c.60]

    Степень ионности связи в НС1 17%, в s l 75%, в Т1С1 29% s l должен иметь наибольшую степень ионности связи, поскольку атомы щелочных металлов обладают очень низкой злектроотрицательностью (а валентный 5-электрон у атома тяжелого элемента группы IA, каковым является С, находится далеко от ядра, вследствие чего его энергия ионизации очень низка) ионный характер связи в этих молекулах повышается по мере уменьшения электроотрицательности атома, присоединенного к С1 хн = 2,20 Хп = 2,04 Хс = 0,79. [c.523]

    Переход электрона из оболочки атома благородного газа иа более высокий энергетический уровень требует такой затраты энергии, которая не может быть компеиспрована образованием связи, поэтому щелочные металлы не проявляют других степеней. окпсления, кроме 4-1- [c.300]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

    Промотирование СГ2О3 щелочными металлами не влияет на механизм окисления углерода. Однако при этом изменяется лимитирующая стадия процесса (лимитирующим этапом становится отрыв кислорода от катализатора) в связи с повышением энергии связи кислорода поверхности катализатора, что приводит к изменению энергии активации процесса выгорания углерода [104]. Эффективность влияния щелочной добавки возрастает с увеличением атомной массы металла-промотора и определяется энергией связи кислорода катализатора. [c.47]

    Из сказанного выше следует, что между удельной каталитической активностью и величинами д существует прямая связь [54]. Так, в процессе окисления ЗОг каталитически активным соединением является пятиокись ванадия и платина. Однако значение величины энергии связи кислорода с Уг05 (<7в) превышает ту же величину для платины. Активность окисла ванадия может быть увеличена путем введения соединений, снижающих дв, к числу которых, по мнению Ройтера [54], можно отнести сульфаты щелочных металлов. [c.35]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]

    Металлическая связь ярко проявляется в щелочных и щелочноземельных металлах. В металлах переходных элементов образование энергетических зон и наличие металлической связи определяется перекрыванием 5-, и р-орбиталей. Но химическая связь в металлах й- и /-элементов не является только металлической связью их специфические свойства (высокие энергии связи атомов и энергии атомизации, высокие температуры плавления и кипения) не исключают возможного возникновения направленной связиспере-крьшанием -орбиталей. [c.123]

    Можно ожидать, что сила солей одной природы, например галогенидов щелочных металлов или солей тетразамещенных аммониевых оснований и различных кислот, будет изменяться при переходе от одного растворителя к другому на постоянную величину. Действительно, для солей одной природы величина (е2 Уд/4,6Д7 )2(2 г )(1/ем, — 1/емЛ остается постоянной либо лишь незначительно изменяется в связи с различием в радиусах ионов. Мало различается и изменение энергии сольватации А сол = 2 солм,  [c.322]

    Пары щелочных металлов состоят преимущественно из атомоа в газовой фазе также содержится некоторое количество молекул Эг, энергия диссоциации которьи невелика (для Uj она р.шна 105 кДж/моль. для si 42 кДж/моль). Малая энергия связи в молекулах Э] обуишвлена тем, что электронами заполняется только одна связывающая орбиталь, образующаяся в основном из 1-орбиталей валентных электронов атомов.  [c.321]

    Ненасыщаемость ионной сиязи. Образование димерных молекул и кристаллов. Важнейшей особенностью ионной связи является ее ненасыщаемость. Поле, создаваемое ионом, имеет сферическую симметрию, и все находящиеся в этом поле другие ионы испытывают его действие. В результате оказывается возможным образование из двух молекул МеХ димерной молекулы Ме2Х2, как, например, в парах над кристаллами фторида лития. Молекулы димера имеют структуру плоского ромба, близкого к квадрату. Как показывает несложный расчет, образование из двух катионов и двух анионов димерной молекулы Me Xj сопровождается выделением энергии в 1,3 раза большей, чем при образовании двух молекул МеХ. Таким образом, димеризация сопровождается выигрышем энергии, и при низких температурах димерная форма молекулы устойчивее мономерной. Кроме димерных молекул в парах над галогенидами щелочных металлов могут существовать и более высокие полимерные формы, как, например, молекулы Li з F3 в парах над LiF. Подобная полимеризация является как бы промежуточным звеном от молекулы к кристаллу МеХ. [c.166]

    По-видимому, первичная гидратация ионов щелочных металлов и галоидов осуществляется 4 молекулами воды, что дает для средней энергии одной связи приблизительно 10—15 ккал/моль. По мере увеличения заряда иона (и уменьшения его радиуса) эта энергия повышается и для АиОНг) " составляет уже около 100 ккал/моль, что по порядку величины соответствует прочной химической связи. Вместе с тем установлено, что непрерывный обмен в гидратной оболочке этого иона одних молекул воды на другие осуществляется весьма интенсивно (наполовину уже за десятые доли секунды). [c.211]

    Для разрыва молекулы О2 на атомы требуется энергия 489 кДж/моль. Поэтому кислород часто взаимодействует с различными веществами, сохраняя одну связь между атомами О, т. е. образуя соединения, содержащие группу —О—О— эта группа называется пероксидной. Пероксиды (или перекиси) образуются, например, при окислении щелочных металлов, углеводородов, жиров и т. д. Одним из первичных продуктов окисления водорода при его горении является простейший пероксид — пероксид водорода Н2О2. Пероксиды играют очень важную роль в развитии цепных процессов при медленном окислении различных веществ, в частности углеводородов. В водных растворах присоединение электрона происходит с участием воды и дает анион НО2 и гидроксил ОН-. В неводных средах, не содержащих протонов, получаются ионы О2 . [c.187]

    Энергия ионцзации обусловливает химические свойства элементов. Ее величина характеризует прочность связи электрона с ядром и служит мерой металл и чности элемента. Так, щелочные металлы, имеющие небольшие энергии ионизаццн, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных газов связана с их высокими значениями энергии ионизации. [c.35]


Смотреть страницы где упоминается термин Щелочных металлов энергии связи: [c.350]    [c.434]    [c.301]    [c.29]    [c.40]    [c.45]    [c.117]    [c.221]    [c.43]    [c.26]    [c.143]    [c.173]    [c.312]    [c.57]    [c.100]    [c.444]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.196 , c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Гидриды щелочных металлов энергия ковалентной связи

Связи в металлах

Связь связь с энергией

Связь энергия Энергия связи

Щелочных металлов ингредиенты энергии связи

Энергия металлов

Энергия связи

Энергия щелочных металлов



© 2024 chem21.info Реклама на сайте