Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциометрическое нейтрализации

    Амины, как правило, являются слабыми основаниями. Так, показатель константы основности анилина в воде (р/(в) равен 9,42. Кроме того, анилин малорастворим в воде. Поэтому его определение в водной среде прямым индикаторным или потенциометрическим методом оказывается невозможным. Как указано ранее (см. книга 2, гл. И, 36), использование в качестве сред для титрования неводных растворителей уксусной кислоты, кетонов, спиртов нитрилов и их смесей с углеводородами — дает возможность определить анилин методом нейтрализации, используя визуальный способ обнаружения точки эквивалентности в присутствии кристаллического фиолетового. [c.442]


    Измерение электродных потенциалов лежит в основе потенциометрии. Потенциометрия применяется, например, для определения конечных точек титрования (потенциометрическое титрование). В зависимости от типа используемых при титровании реакций различают потенциометрическое титрование по методу осаждения, комплексообразования, нейтрализации и окислительно-восстановительное потенциометрическое титрование. В первых двух разновидностях потенциометрического титрования используют электроды, обратимые по отношению к ионам, которые входят в состав осадка или комплексного соединения. Потенциал таких электродов определяют относительно какого-либо электрода сравнения в ходе постепенного добавления титранта. Потенциометрическое титрование, например, очень удобно для определения анионов, образующих нерастворимые соли с ионом серебра. При этом часто в качестве индикаторного используют серебряный электрод. [c.276]

    Привести примеры потенциометрического титрования с использованием реакций нейтрализации, осаждения и окисления — восстановления. [c.175]

    Число омыления определяют обработкой навески продукта спиртовым раствором, едкого кали, последующим подкислением спиртовым раствором соляной кислоты и потенциометрическим титрованием избытка соляной кислоты спиртовой щелочью до pH 10. Число омыления выражается количеством мг едкого кали, необходимым для омыления сложных эфиров и нейтрализации свободных кислот, содержащихся в 1 г исследуемого образца. Эфирное число находят по разнице значений числа омыления и кислотного числа. [c.145]

    Определение концентрации вещества по методу потенциометрического титрования сводится к измерению потенциала индикаторного электрода на потенциометре в процессе нейтрализации раствора и к построению кривой титрования. [c.59]

    Так же, как и окислительно-восстановительные процессы реакции нейтрализации можно проследить потенциометрическим методом. В разделе IIБ 2е, стр. 493 описаны электроды (водородный, хингидронный и т. д.), потенциал которых зависит от p J раствора и которые поэтому применяются для потенциометрических нейтрализаций в качестве индикаторных электродов. [c.506]

    Конечную точку титрования в реакции нейтрализации определяют при помощи электрода, потенциал которого зависит от концентрации ионов водорода водородного, хингидронного, стеклянного, сурьмяного и т. п. В конечной точке титрования происходит резкое изменение потенциала электрода, характер которого зависит от константы диссоциации кислоты и основания и от концентрации раствора. Разработаны методы дифференциального потенциометрического титрования, когда фиксируется не потенциал электрода Е в функции от количества титранта V, а зависимость AE/AV от V. В точке эквивалентности AE/AV максимально. [c.277]


    Сущность определения обменной способности по потенциометрическому методу заключается в построении двух кривых титрования раствора соли щелочью и кислотой в отсутствии и при Наличии адсорбента. Если адсорбент находится в Н -фор-ме, то при титровании до того же значения pH раствора во втором случае потребуется больше щелочи, так как часть щелочи пойдет на нейтрализацию Н-.ионов, вытесненных из адсорбционного слоя. [c.131]

    Дифференцированное потенциометрическое титрование смеси слабых кислот или многоосноБНых кислот либо смеси слабых оснований или многокислотных оснований с точностью до 1 % возможно в том случае, если Kl К2, /(2 Кз, Кз Ki >10 , где /( — соответствующие константы диссоциации кислот или оснований (см. книга 2, гл. II, 7). В этих условиях обеспечивается достаточно заметное изменение pH вблизи точки эквивалентности. Примером подобного титрования может служить последовательная нейтрализация фосфорной кислоты до Н2РО4 и HPOJ- [c.42]

    На одном графике строят три кривые потенциометрического титрования. Значения рК для поликислоты и ее низкомолекулярного аналога рассчитывают по формуле (IV. 1). При этом принимают, что в отсутствие щелочи степень диссоциации слабой кислоты а = О, а в точке нейтрализации а = 1 и что между количеством добавленной щелочи и а имеется прямая зависимость. [c.130]

    При потенциометрическом титровании используются реакции нейтрализации, осаждения, комплексообразования, окисления — восстановления. [c.8]

    Если составить элемент из электрода с постоянным потенциалом (например, нормального водородного или каломельного электрода) и электрода, опущенного в раствор, где меняется концентрация ионов, то по изменению электродвижущей силы этого элемента можно следить за изменением концентрации ионов в растворе. На этом основан метод потенциометрического титрования, применяющийся в химических количественных исследованиях реакций нейтрализации, осаждения и окисления-восстановления. [c.101]

    Представление о буферном действии раствора дают кривые изменения pH при нейтрализации различных кислот (рис. 136). Потенциал электрода при потенциометрическом титровании выражается уравнением [c.317]

    Отчет о работе. 1. Зарисовать полную схему установки для потенциометрического титрования. 2. Объяснить, почему потенциометрическое титрование удобнее проводить с хингидронным электродом. 3. Вычертить кривую потенциометрического титрования и определить точку нейтрализации.  [c.106]

    В потенциометрическом титрования могут быть использованы реакции нейтрализации, осаждения, комплексообразования, окисления — восстановления и применены пo rги все стандартные растворы, которые известны для визуальных титриметрических методов анализа. [c.36]

    Метод основан на прямом дифференцированном титровании стандартным спиртовым раствором дифенилгуанидина (ДФГ) смеси серной кислоты с бисульфатом натрия в среде смешанного растворителя ацетон—этиленгликоль (2 1). В этих условиях серная кислота нейтрализуется последовательно по двум ступеням диссоциации. Кривая потенциометрического титрования характеризуется двумя скачками первый скачок соответствует нейтрализации ионов водорода, образующихся в процессе диссоциации серной кислоты по первой ступени, второй — нейтрализации ионов водорода, образующихся в процессе ее диссоциации по второй ступени, т. е. бисульфат-ионов. [c.448]

    Форма кривой и положение точки эквивалентности зависят от силы кислоты или основания. Для любой точки потенциометрической кривой потенциал электрода можно рассчитать по формулам для вычисления pH растворов соответствующих кислот и оснований. В случае кислот (оснований), которые полностью диссоциируют в растворе, необходимые данные можно получить сравнительно просто. Например, при титровании сильной кислоты сильным основанием до точки эквивалентности концентрацию ионов водорода принимают равной концентрации кислоты, не вступившей в реакцию нейтрализации. Тогда [c.234]

    В зависимости от типа реакции методы потенциометрического титрования делятся на методы осаждения, комплексообразования, окисления — восстановления, нейтрализации. [c.38]

    Потенциометрическое титрование. Это титрование кислот и оснований основано на фиксировании точки эквивалентности по резкому изменению потенциала индикаторного электрода в процессе реакции нейтрализации. Для кислотно-основного титрования применяется стеклянно-хлорсеребряная цепь, так же как и при потенциометрическом определении pH, [c.265]

    Ацидиметрическое титрование. Уравнение кривой потенциометрического титрования сильной кислоты НА сильным основанием МОН может быть выведено следующим путем. Пусть к а эквивалентам кислоты НА добавлено х-эквивалентов основания МОН. Если v — объем раствора, в котором проводится эта реакция нейтрализации, то концентрация ионов водорода в растворе в зависи1лости от количества добав- ленной щелочи МОН выразится уравнением [c.141]


    Уравнение кривой потенциометрического титрования слабой кислоты (рД кисл 4) существенно отличается от полученного ранее уравнения (6.36). Начальная точка кривой, отвечающая раствору чистой кислоты, определяется формулой (6.32). В эквивалентной точке титрования, т. е. при полной нейтрализации кислоты, раствор будет иметь щелочную реакцию за счет гидролиза образовавшейся соли сильного основания. Согласно (6.34), pH такого раствора [c.143]

    Потенциометрическое титрование в методах нейтрализации применяют для растворов кислот и оснований с константой диссоциации не меньше 10 ". Можно также титровать смеси двух кислот, двух оснований, многоосновные кислоты и основания, применяя платиновый индикаторный водородный электрод. [c.501]

    После первого скачка новые одинаковые порции прибавляемого титранта будут вызывать почти одинаковые изменения pH (или потенциала) системы. На этом этапе процесса нейтрализации титрант снова приливают порциями по 0,5 мл до тех пор, пока очередная порция раствора NaOH не вызовет резкого изменения pH (или потенциала) системы. Второй скачок па кривой измеряют, приливая титрант порциями по 2—3 капли. После второго скачка титрант добавляют по 0,5 мл до установления постоянного значения pH (или Е). Первый скачок иа кривой потенциометрического титрования смеси кислот соответствует нейтрализации НС1 (Ui мл NaOH), второй скачок — СНзСООН (Уз мл NaOH) (рис. 3.14). [c.226]

    Точка нейтрализации при этом титровании может быть установлена обычными потенциометрическими методами (с помощью рН-метра) или с помощью цветных индикаторов, точно так же как устанавливается точка нейтрализации в водных растворах. [c.249]

    Установление точки нейтрализации в окислительно-восстановительных реакциях представляет собой почти столь же распространенный метод аналитической химии, как и установление точки нейтрализации в кислотно-основных реакциях. Одним из вариантов этого метода является потенциометрическое титрование (см. гл. 16). При таком титровании наблюдают за изменением потенциала (или окислительной способности) одного из ионов, участвующих в окислительно-восстановительной реакции. Например, процесс [c.370]

    В первую очередь следует назвать анализ смесей кислот, дифференцированное титрование которых в воде обычно невозможно, так как их значения рК различаются менее чем на четыре единицы (условие для раздельного титрования кислот в воде). Сильные кислоты в воде имеют практически одинаковую силу из-за нивелирующего эффекта воды. Если вместо воды в качестве растворителя взять, например, уксусную кислоту, кислоты в смеси можно оттитровать дифференцированно. Примером может служить дифференцированное титрование азотной и хлорной кислот. В воде невозможно также оттитровать серную кислоту по двум ступеням диссоциации, их всегда титруют суммарно. Однако при потенциометрическом титровании серной кислоты в ызо-бутаноле раствором гидроксида тетрабутиламмония происходит последовательная нейтрализация обеих ступеней. Другим- примером является последовательное титрование муравьиной и серной кислоты в метаноле. [c.346]

    Концентрацию определенного компонента раствора (как заряженного, так и незаряженного) можно контролировать потенциометричес-ки, если подобрать электрод, потенциал которого определяется реакцией, включающей этот компонент Проводя титрование анализируемого компонента, потенциометрически определяют конечную точку титрования по резкому изменению потенциала электрода в точке эквивалентности. Так, используя электрод, потенциал которого зависит от pH раствора, можно провести потенциометрическое титрование кислоты или щелочи по методу нейтрализации. Индифферентные электроды используются для титрования обратимых окислительно-вос-становительных систем (окислительно-восстановительное потенциометрическое титрование). Широко применяется также потенциометрическое титрование по методу осаждения или комплексообразования. В этом случае рабочий электрод должен быть обратим по отношению к компоненту раствора (чаще иону), который в процессе титрования образует осадок или комплекс. [c.123]

    При компенсационном методе потенциометрического титрования составляют гальванический элемент так, чтобы один полуэлемент являлся титрационной ячейкой и был индикаторным электродом, соответствующим составу титруемого раствора, а другой — электродом сравнения. Для реакции нейтрализации-алкалиметрии и ацилиметрии — применяют водородный, хингидронный, сурьмяный или стек.пянный злектроды, а в экспресс-методах — вольфрамовый, графитовый, карборундовый или др. Для [c.167]

    Для определения принадлежности ионогенных групп к слабокислотным или сильнокислотным у катионита и слабоосновным или силБноосновным у анионита обычно пользуются потенциометрическим титрованием, соответственно щелочью или кислотой (рис. 24). Для катионитов, содержащих сильнокислотные сульфо- или фосфорнокислые группы, так же как и для анионитов, содержащих четвертичные аммониевые основания (являющиеся сильным основанием), характерен длительный период постоянной величины pH, затем резкий спад с наступлением насыщения ионогенных групп (нейтрализации). Слабо кис- [c.78]

    Потенциометрическое титрование применяют для реакций нейтрализации, осаждения, комплексообразования и окислительно-восстановительных. Во всех этих случаях инди aтopный электрод должен быть обратимым либо по отношению к ионам водорода в растворе, либо по отношению к ионам, образующим комплексное или труднораствори-мое соединение, выпадающее в осадок. При окислительно-восстановительном потенциометрическом титроваиии применяют инертный гладкий платиновый электрод, измеряющий окислительно-восстановительный потенциал раствора. [c.141]

    Кроме 1еводного титрования с индикаторами метода нейтрализации, можно применять потенциометрическое, кондуктометрическое, амперометрическое титрования. Размеры капель неводных растворов значительно меньше размера капель водных растворов вследствие меньшего поверхностного натяжения. Это повышает точность титрования. Неводное титрование можно применять для редокспроцессов, комплексообразования и осаждения. [c.445]

    Потенциометрическое титрование применяют в реакциях нейтрализации, окисления-восстановления, осаждения, реакциях, включающих процесс поляризации, в ускоренном методе Пинкгофа — Тред-вела. [c.501]

    Потенциометрически можно производить многие аналитические определения, используя различные методы объемного анализа, наиример метод осаждения, нейтрализации, оксидиметрии и др. Однако в каждом конкретном случае необходимо правильно подобрать соответствующий индикаторный электрод, потенциал которого заметно бы реагировал на изменение концентрации определяемых ионов в растворе. Теоретический расчет и опытные данные показывают, что наибольшее изменение величины иотенциала индикаторного электрода наблюдается вблизи эквивалентной точки. Таким образом, резкое изменение величины электродного потенциала служит своеобразным индикатором, указывающим на конец титрования. [c.311]

    Эквива.тснт нейтрализации, полученный при потенциометрическом титровании различных образцов ирепар .та стандартными растворами соляной кислоты, оказался рав1 ым 144 — Н5 (вычислено 143,2). [c.28]

    Штамлер и Печниц [1192] определяют алю.миний в медных сплавах компенсационным потенциометрическим методом, титруя раствором едкого натра. В качестве индикаторного электрода применяют хингидронный, электродом сравнения служит насыщенный каломельный. Медь и свинец предварительно отделяют электролизом. Алюминий осаждают аммиаком вместе с Ре и Мп и тем самым отделяют его от 2п и N1. Затем после растворения гидроокисей в кислоте титруют алюминий щелочью, маскируя железо и марганец цианидом. Первый скачок потенциала, соответствующий нейтрализации свободной кислоты, происходит при pH 3,62 второй скачок, соответствующий взаимодействию алюминия со щелочью, наблюдается при pH 6,7 (рис. 3 и 4). По разности объемов раствора едкого натра при двух скачках потенциалов определяют содержание алюминия. [c.88]


Смотреть страницы где упоминается термин Потенциометрическое нейтрализации: [c.55]    [c.210]    [c.40]    [c.40]    [c.64]    [c.158]    [c.345]    [c.59]    [c.229]    [c.79]    [c.264]    [c.142]    [c.257]   
Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрализация

потенциометрическое



© 2024 chem21.info Реклама на сайте