Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая в многоатомной молекуле

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]


    Образование химических связей в многоатомных молекулах сопровождается не только сдвигом электронной плотности и изменением формы орбиталей, но и изменением распо- [c.44]

    Химическая связь в многоатомных молекулах 57 [c.1]

    ХИМИЧЕСКАЯ СВЯЗЬ В МНОГОАТОМНЫХ МОЛЕКУЛАХ [c.57]

    Отметим еще одно обстоятельство. Поскольку экспериментальные данные о форме и размерах молекул весьма полны и детальны, теоретическая интерпретация также должна быть достаточно полной. Мы не можем больше довольствоваться некоторыми условными обозначениями вроде тех, с помощью которых, согласно Одлингу (1860) и Кекуле (1861), простая связь между двумя атомами представляется одной, а двойная связь — двумя черточками и молекула Нг записывается в виде Н—Н, а молекула СОг в виде 0 = С = 0. Хотя подобные структурные формулы и указывают в некоторой степени на относительное расположение атомов, они ничего не говорят о длине связей. Они не позволяют также ответить на вопросы о том, каков характер химической связи, какова разница между двойной связью и двумя напряженными простыми связями и какое вообще основание мы имеем говорить об отдельных связях в многоатомной молекуле. Любая приемлемая теория валентности должна дать ответы на эти и подобные им вопросы. [c.15]

    Коэффициенты упругости (силовые постоянные или силовые коэффициенты) химических связей в многоатомных молекулах дают, естественно, гораздо более надежную информацию об особенностях состояния связей, чем значения частот даже так называемых характеристических колебаний , которые никогда не бывают локальными. Однако взаимодействие между отдельными структурными элементами молекул очень усложняет силовое поле и не позволяет имитировать молекулу набором простых упругих элементов. Для удовлетворительного описания спектров необходимо введение в матрицу потенциальной энергии недиагональных силовых коэффициентов Кц - [c.141]

    ХИМИЧЕСКАЯ СВЯЗЬ Б МНОГОАТОМНЫХ МОЛЕКУЛАХ 261 [c.261]

    ХИМИЧЕСКАЯ СВЯЗЬ в МНОГОАТОМНЫХ МОЛЕКУЛАХ 275 [c.275]

    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]


    Приближенная квантовомеханическая теория валентности, получившая развитие в тридцатые годы в методе валентных связей (теория локализованных пар, или теория направленных валентностей), объясняла многие опытные факты целочисленную постоянную и переменную валентность, направленность валентности и аддитивность ряда физико-химических свойств многоатомных молекул. Основные положения теории локализованных пар в методе ВС  [c.56]

    В настоящее время в большинстве работ по теории химической связи используется метод МО. Это объясняется тем, что в применении к многоатомным молекулам метод МО, как и программирование расчетов на электронно-вычислительных машинах, математически проще и легче, чем метод ВС. [c.23]

    Важнейшей характеристикой химической связи является энергия, определяющая ее прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна величине энергии диссоциации молекул на атомы. Так, энергия диссоциации О, а следовательно, и энергия связи Е в молекуле На составляет 435 кдж моль. В молекуле фтора Ра она равна 151 кдж моль, а в молекуле азота N2 940 кдж моль. Для многоатомных молекул типа АВ средняя энергия связи Еав равна 1/га части энергии диссоциации соединения на атомы  [c.56]

    Потенциальная поверхность. Равновесная конфигурация. Для многоатомной молекулы г эл.мол является функцией уже не одной, а нескольких пространственных координат Ri . Например, для описания расположения трех ядер линейной молекулы АБС нужны две независимые координаты R (A. — В) и — С), если угол АБС считать фиксированным (180°). Потенциальная энергия молекулы АБС при этом становится функцией двух указанных координат, = R. , и эта функция изобразится поверхностью в трехмерном пространстве потенциальная поверхность). Устойчивому состоянию молекулы отвечает минимальное значение ее энергии е(г 1, === эл.мол (АВС) и определенное относительное расположение ядер в пространстве, называемое равновесной конфигурацией молекулы с параметрами / (А— В) и г (В—С). Глубина потенциальной ямы определяет энергию химической связи связанную с энергией диссоциации молекулы или энергией атомизации соотношением (13.4). Для более сложной молекулы, чем линейная АВС, равновесная конфигурация и энергия равновесного состояния определяются положением минимума на потенциальной поверхности в многомерном пространстве. Если потенциальная поверхность имеет два (или более) минимума, для молекулы возможны два изомера или более, отличающиеся параметрами равновесной конфигурации и энергией. Если минимума на потенциальной поверхности нет, данная система нестабильна, при любом расположении ядер она распадается на невзаимодействующие атомы. [c.46]

    В то же время метод ВС не потерял своего значения для химиков в связи с большей наглядностью рассматриваемой им физической модели молекулы. С развитием вычислительной техники метод ВС позволил производить сложные количественные расчеты многоатомных молекул, более точно описывать энергетику и механизм химических процессов. [c.25]

    Все рассмотренные до сих пор случаи относятся к связям, образованным электронами на молекулярных а-орбиталях. Вследствие главной особенности этих орбиталей (осевая симметрия) между двумя атомами, которые могут вступать в химическое взаимодействие друг с другом, образуется одна а-связь независимо от того, составляют ли эти атомы двухатомную молекулу или входят в состав сложной многоатомной молекулы. Один атом может участвовать в нескольких а-связях, соединяющих его с несколькими атомами с двумя (например, две р-орбитали атома О или две гибридных орбитали типа зр атома М ), с тремя (три р-орбитали атома N или три гибридных зр -ор-битали атома В), четырьмя (четыре гибридных 5р или р -орбита-ли) и даже шестью атомами (шесть гибридных р -орбиталей). [c.71]

    Существующими экспериментальными методами до настоящего времени было невозможно определять значения энергии диссоциации химических связей в многоатомных молекулах. Особенно это касается, наиболее важного с практической точки зрения, определения энергий диссоциации связей в реагентах, при их взаимодействии в растворах. Квантовохимические ab initio и полуэмпирические вычисления не могут обеспечить нужной точности вычисления энергии диссоциации связей даже в газовой фазе. [c.80]

    В общем случае границу проводят примерно при 50 кДж-моль Если при образовании двухатомной молекулы из aijOMOB выделяется энергия больше этой величины, то между обоими атомами существует химическая связь. Выделяющаяся при этом энергия называется энергией связи, а расстояние между атомами — длиной связи. Поскольку для разрыва связи между атомами требуется такое же количество энергии, то ее называют энергией диссоциации связи. В многоатомных молекулах эти отношения сложнее (см. раздел 1.5.2). В общем случае считается, что связь тем прочнее, чем больше величина энергии связи. Энергия большинства связей лежит в пределах 400—600 кДж-моль (табл. 1.2.2), причем наиболее прочной является тройная связь N = N с энергией 946 кДж-моль (о гЛетодах экспериментального определе-. ния энергии связи см. раздел 1.5.2). При образовании многоатомных мо- [c.52]


    В ТО время как в методе МО исходят из делокализованных орбиталей. Эта трудность преодолевается, если предположить, что, несмотря на наличие многих атомов, молекулярные орбитали являются двухцентровыми. Следуя Гунду [165], можно сказать, что химическая интуиция и опыт заставляют нас заменить нело-кализованные орбитали локализованными. Тем самым становится возможным трактовать связи в многоатомных молекулах точно так же, как это делалось в гл. 4 и 5. [c.178]

    Эту величину обычно называют энергией химической связи Для многоатомных молекул, содержащих более одной хи- мической связи, теплота диссоциации определяет среднюю энергию связей, например  [c.32]

    Данные по энергиям разрыва связей в многоатомных молекулах, полученные до середины 1953 г., собраны в монографии Т. Коттрелла Прочность химических связей [1]. Величины О, взятые из этой монографии, сопровождаются ссылкой [1]. Во всех остальных случаях дается ссылка на оригинальные работы или обзоры. [c.68]

    Если бы квантово-механическая теория химических связей была вполне совершенной, она должна была бы объяснить все отличия, которые имеются между различными связями. Ниже мы рассмотрим некоторые из попыток, которые делались в этом направлении укажем также на некоторые трудности, с которыми теория должна столкнуться в этих вопросах. Но и до этого следует указать, что во многих случаях некоторые из этих свойств с трудом поддаются определению. Так, например, во всех молекулах, кроме двухатомных, на энергию диссоциации связи сильно влияют атомы, находящиеся рядом с этой связьнэ. Таким образом, говоря об энергии связи С—С в этане, необходимо точно охарактеризовать состояние метильных групп после разрыва связи. Термохимическое измерение теплоты диссоциации этана на два метильных радикала дает значение энергии, необходимой для образования метильных радикалов, в их наиболее устойчивом состоянии, которое, по-видимому, является плоским. Но с теоретической точки зрения более целесообразно рассматривать энергию, требуемую для разрыва связи С —С без изменения длин связей С — Н и валентных углов в двух образую-. щихся метильных группах. Эти две энергии, вероятно, сильно отличаются одна от другой. Аналогично силовая постоянная связи в многоатомной молекуле определяется при анализе нормальных колебаний молекулы, но оказывается (за исключением, конечно, случая двухатомных молекул), что имеются взаимодействия между деформациями отдельных связей, которыми шкак нельзя пренебречь, что усложняет оценку силовой постоянной данной связи. На дипольный момент связи в многоатомной молекуле влияют поляризационные эффекты и другие взаимодействия с остальными связями, [юэтому выделить собственный), дипольный момент данной связи также уюжет быть затруднительно. Таким образом, уже перед тем, как приступить к созданию теории изменения химических связей между различными атомами, мы наталкиваемся на трудности в однозначной формулировке ( пактов, подлежащих объяснению. [c.366]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Заметим, что удаление любого электрона из атома или молекулы требует затраты энергии и всегда увеличивает полную (отрицательную) эиергию системы. Энергия же химической связи может изменяться при этом различным образом. Кроме того, в случае многоатомных молекул уже нельзя говорить о связывающих и антисвязывающих МО вообще, но лишь о связывающем и разрыхляющем характере данной МО в области той или иной связи. [c.202]

    Метод эффективного задания начальных условий в случае моделирования распада многоатомной молекулы, идущего через барьер активации описан в главе 3. Остановимся более подробно на проведенном в [47] динамическом исследовании реакции спонтанного распада линейной молекулы МгО с использованием однопотенциального приближения. Выбор для исследований молекулы N2О обусловлен интересом, проявленным к этой молекуле в физико-химической кинетике в связи с лазерной техникой и с использованием N 0 в качестве источника дозированных количеств атомарного кислорода [102]. [c.114]

    Из того факта, что энергия метастабильного уровня E несколв-ко ниже энергии у дна зоны проводимости, ясно, что энергетический зазор Е4-з=Е — Ез меньше ширины запрещенной зоны Е2-1=Е2 — Ей Следовательно, в твердом веществе, активированной примесями и находящемся благодаря этому в метастабильном состоянии, значительная часть валентных электронов (а имен- но около 0,1%) связана с атомными остовами менее прочно, чём в чистом веществе, не содержащем активирующих примесей. А. Н. Теренин установил, что преобразование электронной энергии возбуждения путем разрыва наиболее слабой валентной связи в потенциальную энергию движения атомных ядер, т. е. в вибрационную энергию, характерно для многоатомных молекул и, добавим, тем более для твердого вещества. Он назвал это явление предиссоциацией. Таким образом, поглощение света веществом при определенных условиях сопровождается разрывом валентных связей и тем самым придает веществу повышенную химическую [c.128]

    Энергия связи — одна нз основных характеристик химической связи она определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Так, энергия связи молекулы Нз равна 436 кДж/моль, энергия связи молекулярного моиа водорода Щ составляет 255,7 кДж/моль, а молекулы НР 560 кДж/моль. Очевидно, более прочна связь в НР. Для двухатомных молекул энергия связи равна энергии диссоциации. Для многоатомных молекул с равноценными связями, как, например, для СН4 (4 связи С—Н), средняя энергия связи равна энергии разрушения молекулы на атомы, т. е. 1649 кДж/4=412,25 кДж, где 1649 кДж/моль — энергия распада 1 моль на атомы (энергия ато-мнзации). [c.96]

    Сравнение методов ВС и МО. Эти методы, на первый взгляд, совершенно различны, но более подробное сопоставление вскрывает много общих черт. В методе ВС предполагается, что атомы полностью сохраняют свою индивидуальность, и единственным изменением, происходящим при образовании молекулы, является обмен электронами между орбиталями соседних атомов. Метод МО, по существу, является распространением теории многоэлектронных атомов на молекулы. Если состояние атома описывается как совокупность атомных орбиталей, то аналогично можно рассматривать молекулу как совокупность молекулярных орбиталей, которые возникают из комбинации орбита-лей атомов, входящих в состав молекулы. Оба эти метбда скорее дополняют, чем противостоят друг другу. Аргументированный выбор между ними целиком зависит от тех задач, которые необходимо решить. В настоящее время в большинстве работ по теории химической связи применяется метод МО. Это объясняется тем, что в применении к многоатомным молекулам как сам метод МО, так и программирование расчетов на ЭВМ осуществляется проще, чем для метода ВС. С другой стороны, метод ВС дает более наглядное представление о химической связи и строении молекул. [c.198]


Смотреть страницы где упоминается термин Связь химическая в многоатомной молекуле: [c.101]    [c.89]    [c.258]   
Основы общей химии Т 1 (1965) -- [ c.98 ]

Основы общей химии том №1 (1965) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулы многоатомные

Молекулы связь

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте