Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Многоатомные молекулы в методе МО

    Приближенная квантовомеханическая теория валентности, получившая развитие в тридцатые годы в методе валентных связей (теория локализованных пар, или теория направленных валентностей), объясняла многие опытные факты целочисленную постоянную и переменную валентность, направленность валентности и аддитивность ряда физико-химических свойств многоатомных молекул. Основные положения теории локализованных пар в методе ВС  [c.56]


    При описании электронной структуры многоатомных молекул используются различные разновидности полуэмпирических и неэмпирических (аЬ initio) расчетных методов приближения МО ЛКАО. Наиболее простым из полуэмпирических методов является метод Хюккеля, сокращенно МОХ (1931). Коэффициенты многоцентровой МО [c.110]

    Развитие исследований многоатомных молекул методами колебательной спектроскопии характеризуется прежде всего все большим применением теоретического анализа колебаний для решения конкретных задач. Такое внедрение теоретических методов становится необходимым как в связи с усложнением изучаемых объектов, так и благодаря постепенному осознанию того факта, что сплошь и рядом только на основе теоретического анализа можно более или менее уверенно разделить различные причины, приводящие к наблюдаемым в спектре явлениям, и сделать достаточно обоснованные выводы о внутримолекулярных процессах. Поэтому современное спектрохимическое исследование должно сочетать в себе экспериментальную часть и теоретический анализ колебаний модели изучаемой молекулы, причем выбор для решения той или иной задачи соответствующих спектральных признаков (сдвиг полос в спектре, изменение их интенсивностей и т. д.) также дол- [c.182]

    Для многоатомных молекул метод в приближении МО ЛКАО дает систему из п уравнений, где п — число атомов в молекуле  [c.11]

    В настоящее время в большинстве работ по теории химической связи используется метод МО. Это объясняется тем, что в применении к многоатомным молекулам метод МО, как и программирование расчетов на электронно-вычислительных машинах, математически проще и легче, чем метод ВС. [c.23]

    Для проведения расчетов атомов или многоатомных молекул методом ССП разработано много сложных вычислительных программ, реализуемых на быстродействующих ЭВМ. (Некоторые из этих программ могут быть получены заинтересованными [c.256]

    Другой путь использования модели валентных сил для расчета неизвестных частот колебаний многоатомных молекул — метод переноса силовых постоянных. Обзор установившихся приемов переноса силовых постоянных имеется в работе [46]. [c.28]

    Отличие в величинах Го для изотопных двухатомных молекул не велико, но для многоатомных молекул оно возрастает и, как видно из разд. 3.2, ограничивает точность определения молекулярных параметров для многоатомной молекулы методом изотопного замещения. [c.66]

    Для более сложной системы, например газа, содержащего N многоатомных молекул, метод остается, по существу, тем же. Только фазовое пространство имеет уже 2Nf измерений и называется гамма-пространством (у-пространство). Точка в таком пространстве изобразит [c.202]


    Анализ колебаний состоит в рассмотрении колебаний многоатомной молекулы методами классической механики. Движения N атомов с массами можно описать ЪЫ декартовы- [c.38]

    Однако как средство получения количественной информации, особенно для многоатомных молекул, метод ВС остается пока неудобным. Причина в том, что с ростом числа атомов в молекуле количество всех мыслимых ионных и возбужденных структур растет слишком быстро. Выше это было показано для возбужденных структур, но то же самое можно сказать и об ионных структурах, поскольку каждая из них описывает перенос целого количества электронов, реальные же заряды атомов в молекулах — дробные (см., например, гл. 2—5). Рационального метода, позволяющего априори отбирать из всех возможных структур малую долю наиболее существенных из них, и притом делать это универсальным, пригодным для любых молекул и достаточно простым способом, пока нет. Вероятно, по этой причине метод ВС применяется сейчас сравнительно редко (см. недавний обзор [41]). [c.24]

    Чрезвычайно важно, что эта частота, связанная в соответствии с представлениями квантовой механики с переходом между энергетическими уровнями, может быть идентифицирована с классической частотой колебания той же системы, представленной выше как функция силовой постоянной и приведенной массы. Это позволяет существенно упростить теорию, так как частоты сложной системы (такой, как многоатомная молекула) могут быть вычислены при помощи методов классической механики, а квантовая трактовка проблемы может быть дана уже в применении к конечным результатам. [c.295]

    Такой метод рассмотрения связи между двумя данными атомами используется не только для двухатомных молекул, но и для ковалентных связей в многоатомных молекулах. И в этом случае каждой простой связи отвечает одна электронная пара. [c.67]

    Для простоты мы и в вопросах, относящихся к методу МО, ограничиваемся описанием электронных связей только между двумя рассматриваемыми атомами, т. е. на основе двухцентровых орбит, как это было раньше общепринято в химии и как это принято в методе ВС — валентных схем (локализованных электронных пар). Однако для многоатомных молекул это отнюдь не является единственно возможным. В частных случаях могут рассматриваться орбиты, охватывающие три или большее число атомов. В других же случаях метод МО, по крайней мере в некоторых формах его применения, описывая состояние данного электрона в поле действия всех атомных ядер и электронов, содержащихся в молекуле, использует представления о делокализации электрона, как это принято в аналогичных теориях атома. [c.68]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    МНОГОАТОМНЫЕ МОЛЕКУЛЫ В МЕТОДЕ МО [c.93]

    Мономолекулярные реакции с участием многоатомных молекул являются наиболее трудоемким объектом моделирования с помощью метода классических траекторий. Сложности вычислений связаны как с процедурами адекватного воспроизведения различных видов активации молекулы, так и с необходимостью расчетов длинных по времени траекторий. В этом разделе анализируются конкретные реакции мономолекулярного распада, исследованные методом классических траекторий. В рассмотренных работах изучен механизм межмодового перераспределения энергии и протекания мономолекулярной реакции в зависимости от вида активации молекулы. Предложены процедуры адекватного воспроизведения начальных условий, соответствующих тому или иному виду активации. Как уже отмечалось выше, динамические расчеты могут служить базой для проверки статистических теорий, которые широко используются в теории мономолекулярного распада. В ряде работ проведена проверка применимости статистических теорий на базе вычисления функции распределения по временам жизни, определено время установления равновесного распределения. [c.113]


    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    При переходе к более сложным реакциям определение Е чрезвычайно усложняется. Но несмотря на то что квантовомеханический метод расчета поверхности потенциальной энергии элементарного химического акта для реакций с многоатомными молекулами практически пока не осуществим из-за математических трудностей этот подход является в принципе наиболее правильным. Поэтому приближенное решение проблемы ищут исходя из квантовомеханических представлений как путем упрощения физической картины процесса, так и путем упрощения математического аппарата теории. [c.571]

    Новый этап в развитии и использовании метода люминесцентного анализа начался с 1952 г., когда Э. В. Шпольский и со<-трудники открыли эффект существования тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [16, 20]. Было показано, что при использовании низкомолекулярных парафинов (Сб—Сю) неразветвленного строения в качестве матрицы в условиях низких температур (ниже — 196°С) диффузные полосы люминесценции многоядерных ароматических углеводородов способны расщепляться на ряд узких и четких линий. Было показано, что существует принципиальная возможность определять тип молекулярной структуры неизвестных соединений на основе анализа его квазилинейчатого спектра и данных о связи структуры спектра со строением молекул. [c.215]

    Как правило, при построении поверхностей потенциальной энергии методом DIM удается получить достаточно хорошие результаты — точность расчетов при правильном выборе базисных функций приближается к точности неэмпирических расчетов. При этом достаточно уверенно предсказываются и энергии связей в многоатомной молекуле и ее геометрия. [c.56]

    Изложенные выше методы моделирования позволяют исследовать кинетику химических реакций с различными механизмами активации и распада многоатомных молекул вне зависимости от числа атомов, входящих в молекулу. [c.76]

    При моделировании некоторых элементарных процессов (мономолеку-лярный распад многоатомных молекул, процессы перераспределения энергии) возникает необходимость расчета длинных (более 100 низкочастотных колебаний молекулы) траекторий. В этом случае оказывается, что применение разностных методов может привести к существенному накоплению ошибки численного интегрирования. Для расчета длинных траекторий был предложен алгоритм, основанный на идее квазилинеаризации [140] и сохранении полной энергии системы вдоль траектории [49], [c.78]

    Дудников а Т. А., Паршин П. Ф. Квантовомеханические методы расчета многоатомных молекул. Изд-во ЛТИ им. Ленсовета, 1973. [c.98]

    Согласно методу ЛКАО—МО орбитали многоатомной молекулы (комплекса) можно представить в виде линейной комбинации орбиталей центрального атома и групповых орбиталей периферических атомов (лигандов). [c.177]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Феноменологические представления о различии показателей преломления для лучей с правой и левой круговой поляризацией не дают возможности установления более глубоких связей явления оптического вращения и молекулярных свойств. К сожалению, в теории оптической активности, как и в теориях ряда других методов, не достаточно полно решена прямая задача и поэтому ограничено решение обратной задачи метода. Прямая задача состоит в определении экспериментально измеряемого угла вращения а на основе молекулярных свойств. Взаимодействие света с веществом связано с характером волновых функций электронного состояния и их изменениями в электромагнитном поле волны. Однако волновые функции для электронных состояний многоатомной молекулы из-за [c.174]

    Для более сложной системы, например газа, содержащего N многоатомных молекул, метод остается по существу те1у1 же. Только фазовое пространство имеет уже 2Nf измерений и называется гамма-пространством ( -пространство) . Точка в таком пространстве изобразит мгновенное состояние всей системы в целом, т. е. даст подробное описание каждой из составляющих ее частиц — точные значения всех 2Л / переменных. Соответственно траектория такой изображающей точки представляет развитие рассматриваемой системы во времени. В этом случае траектория определяется уравнениями вида (VI.8), т. е. [c.179]

    Широко применяемый в теории многоатомных молекул метод FG-матриц Вильсона [47, 74], как показали Шиманучи и др. [75], применим и при определении фундаментальных мод кристаллов (в приближении к = 0). Частоты получают в виде решения векового уравнения [c.388]

    Молекула ВеНз- В случае многоатомных молекул согласно методу ЛКАО молекулярная орбиталь составляется из орбитали центрального атома (г1зц,а) и групповой орбитали ( ) ,р) периферических атомов (лигандов)  [c.58]

    Применение метода ОВЭП к конкретным многоатомным молекулам начинается с подсчета числа неподеленных электронных пар их цедтраль-ного атома и числа связанных с ним атомов., Будем называть суммарное ч"исло атомов, связанных с центральным атомом молекулы, и его неподеленных электронных пар стерическим числом (СЧ). Если у центрального атома А нет неподеленных пар электронов и его СЧ определяется просто числом связанных с А атомов X, то наблюдаемое геометрическое строение молекул согласуется с указанным на рис. 11-2. В каждом из примеров, при- [c.491]

    Сложности возникают и с понятием порядка связи в рамках метода МО. Следует подчеркнуть, что хотя мы говорим об одной связи для каждой результирующей пары связьшающих электронов, это не означает, что все связи между каждыми двумя атомами являются обязательно двухэлектронными или что в случае многоатомных молекул связи обязательно локализованы между двумя атомами. [c.576]

    Усиление интереса к указанному методу в настоящее время в значительной степени объясняется прогрессом ЭВМ. Последнее обстоятельство позволяет производить количественные аЬ initio расчеты многоатомных молекул, хоть и более сложным в вычислительном отношении, но зато и более точно описывающим энергетику и механизм химических процессов, методом ВС. При этом в наши дни не только проводится его последовательная численная реализация в расчетах конкретных, постепенно усложняющихся молекулярных систем, но также ведется дальнейшее совершенствование формализма. В частности У. Годдардом был разработан обобщенный метод ВС, который был с успехом применен как для расчета и качественного рассмотрения отдельных соединений, так и для анализа механизмов химических реакций. [c.170]

    При расчете энтропии многоатомных молекул статистическим методом поступательную составляющую энтропии вычисляют аналогично поступательной составляющей для двухатомных молекул. Вращательную составляющую энтропии рассчитывают в зависимости от типа молекул. Колебательную составляющую энтропии для каяадой степени свободы колебательного движения находят по та(Ьлице термодинамических функций Эйнштейна и суммируют по всем колебательным степеням свободы. При наличии внутреннего вращения составляющую энтропии 5вв.вр определяют по уравнению (УП1.64) для каждой степени свободы внутреннего вращения и затем составляющие суммируют. Электронную составляющую энтропии вычисляют по уравнению (УП1. 60). [c.107]

    Метод эффективного задания начальных условий в случае моделирования распада многоатомной молекулы, идущего через барьер активации описан в главе 3. Остановимся более подробно на проведенном в [47] динамическом исследовании реакции спонтанного распада линейной молекулы МгО с использованием однопотенциального приближения. Выбор для исследований молекулы N2О обусловлен интересом, проявленным к этой молекуле в физико-химической кинетике в связи с лазерной техникой и с использованием N 0 в качестве источника дозированных количеств атомарного кислорода [102]. [c.114]

    Известно, что в многоатомных молекулах сохраняется симбатность частоты (или волнового числа) колебания и величины (к//л), где к - силовая постоянная связи и /i - приведенная масса молекулы. Таким образом, полоса поглощения фуллерена С60, соответствующая его характеристической частоте 528 см" отображает колебания фрагмента молекулы, имеющей большую молекулярную массу. По этой же причине в данной области практически отсутствует поглощение других компонентов смеси. Данный факт свидетельствует в пользу того, что полоса поглощения 528 см и ее интенсивность являются оптимальными для количественного анализа фуллеренов С60 ИК-спектроскопическим методом сложных многокомцонентных смесей. Поэтому для дальнейших исследований образцов, подобных представленному на рис. 1.4, был получен градуировочный фафик фуллеренов С60 в четыреххлористом углероде, откалиброванный по полосе поглощения 528 см" (рис. 1.5). [c.17]

    Возникновение и развитие масс-спектрометрического метода. Основой для создания и развития масс-спектрометрического метода анализа послужили работы по исследованию электрического разряда в газах при низком давлении. Принципы анализа положительных пучков, состоящих из ионов, возникающих при бомбардировке молекул вещества электронами, были изложены в 1910 г. Дж. Дж. Томсоном [1]. В его методе парабол положительные ионы, двигаясь в узкой трубке, подвергались действию параллельно расположенных электрического и магнитного полей и, попадая на фотопластинку, образовывали на ней серии параболических кривых. На каждую кривую укладывались частицы, характеризующиеся одинаковым отнощением массы к заряду (т/е), но различной скоростью. При исследовании многоатомных молекул получалось несколько парабол, что указывало на диссоциацию молекул с образованием различных положительно заряженных осколков. Так, молекула O U дает параболы, соответствующие ионам С+, 0+, С1+, С0+, U СС1+ и O I2+. При анализе углеводородов также наблюдались осколки молекул. [c.5]

    Все перечисленные выше и ряд других сведений о строении молекул получаются из спектральных данных при помощи разработанной за последние десятилетия теории колебательных и вращательных спектров. Теория относится в равной мере к инфракрасным спектрам и спектрам комбинационного рассеяния и, конечно, не может быть изложена в настоящей главо. Она подробно изложена в монографиях, к которым и отсылаем читателя. Теория вращательных и колебательно-вращательных спектров многоатомных молекул систематически изложена в прекрасной монографии Герцберга [7]. Ряд вопросов теории, особенно методы расчета колебательных частот молекул и упругих электрооптических постоянных межатомных связей, в ьаиболсе полной и совершенной форме развиты в монографии Волькенштейпа, Ельяшевича и Степанова [5] см. также [4, 12, 549а, 559] и обширную библиографию в [7]. [c.483]

    Макромолекулы — это не просто огромные молекулы, а качественно иные структурные единицы вещества. В то время как атомы являются электронно-ядерными системами первого порядка, молекулы и макромолекулы представляют собой квантовые системы второго и третьего порядка соответственно. На это указывают их электронные конфигурации (см. гл. VII, VIII). Последние выявляются статистико-термодинамическими, химическими, магнитными, электрофизическими, спектроскопическими и особенно рентгеноструктурными методами в сочетании с квантовомеханическими расчетами. Приближ енными квантовомеханическими расчетами при помощи ЭВМ определены электронные структуры многоатомных молекул и кристаллов. Отметим, что кристаллы являются макромолекулами соответствующих твердых соединений. Молекулы и макромолекулы можно рассматривать как системы, построенные из атомных остовов и валентных электронов. Понятно, что к каждому данному твердому соединению относится только одно твердое вещество, состоящее из бесчисленного количества одинаковых твердых тел. Последние представляют соб ой, таким образом, макромолекулы твердого вещества. [c.15]

    Метод измерения ДМ, основанный на изучении инфракрасных спектров, использует существование взаимосвязи между интенсивностью полос ИК-спектра, принадлежащих той или иной связи в молекуле, и ДМ этой связи. Этот метод позволяет непосредственно опредблить ДМ двухатомных молекул, а в случае многоатомных молекул охарактеризовать ДМ отдельных связей и групп атомов. [c.326]

    Следует четко отличать эти обозначения ядерных спиновых систем от аналогичных по виду общих по типу формул двухатомных и многоатомных молекул (например, АВ, АХг, АХ4, АХУа и т. д.), широко используемых в других главах учебника, как и вообще в литературе по строению молекул и физическим методам исследования. [c.22]

    Простое определение молекулярной структуры многоатомных молекул. Понятие молекулярной структуры лежит в основе современного учения о строении молеку.п. Молекулярная структура определяется равновесной конфигурацией пространственного расположения ядер атомов, образующих молекулу. Эта конфигурация сложной молекулы в принципе может быть рассчитана по методу МО. Существует ряд приближенных моделей и методов, которые используются для систематического анализа накопленных экспериментальных данных и оценки геол1етрических конфигураций молекул. В определенных пределах они часто позволяют ие только дать разумное объяснение наб.лю-даемых геометрических конфигураций молеку.п. но на основе установленных закономерностей и корреляций правильно предсказывать геометрию молеку.п без длительных и трудоемких квантовохимическнх расчетов. Одним из таких [c.133]


Смотреть страницы где упоминается термин Многоатомные молекулы в методе МО: [c.56]   
Смотреть главы в:

Физическая химия -> Многоатомные молекулы в методе МО




ПОИСК





Смотрите так же термины и статьи:

Метод Молекулы

Молекулы многоатомные



© 2025 chem21.info Реклама на сайте