Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия метастабильного состояния

    При сравнении разряда в Не, Аг, Ог и СОа наиболее низкая температура катода (и температура газа, заполняющего полость) наблюдалась для Не, а наиболее высокая для Ог и СОз [599, 600]. При этом интенсивность линий материала катода и ряда примесей (А1, Аи, Са, Си, Ре, Мд, Мо, 5з, Zn) в Не на порядок ниже, чем в Аг, и на несколько порядков ниже, чем в Ог и СОг. По-видимому, столь значительное различие интенсивности, а, следовательно, и предела обнаружения примесей вызвано не только изменением температуры (различие которой в Не и в Ог и СОг составляет 600°С), но и неодинаковыми словиями возбуждения спектров в этих газ ах и, в частности, разными потенциалами ионизации и энергиями метастабильных состояний атомов и ионов газа. Так, при возбуждении спектра Си в Не (24,6 эв) наблюдаются интенсивные ионные линии с потенциалом возбуждения 13 слабые линии с потенциалом возбуждения 8 эв в Аг (15,8 эв) присутствуют только слабые линии Си — 8 эв, а в Нг (13,6 эв) ионный спектр Си вообще отсутствует [599]. [c.185]


    Наоборот, если энергия ионизации постороннего (анализируемого) компонента больше, чем энергия метастабильного состояния,, то, с одной стороны, при взаимодействии возбужденного атома инертного газа с молекулами постороннего компонента энергия возбуждения гасится без ионизации [c.451]

    Чтобы детектор, работающий на этом принципе, был универсальным, необходимо применение газов-носителей с высокими значениями энергии метастабильного состояния. Такому условию отвечают, в частности, гелий и аргон, энергии метастабильных состояний которых довольно высоки (19,6 и 11,6 эВ) и превышают потенциалы ионизации большинства веществ. Однако для поддержания достаточной концентрации метастабильных атомов газы-носители должны иметь высокую чистоту. По этой причине, а также из-за сравнительно малого диапазона линейности, неустойчивости работы и необходимости стабильного высоковольтного питания эти детекторы (особенно гелиевый) не получили широкого практического применения. [c.57]

    Очевидно, что энергия электронного возбуждения одного из атомов иода, возникающего в результате диссоциации молекулы, должна быть равна 2,4—1,5 = 0,9 эв. Такому уровню энергии атома соответствует энергия метастабильного состояния, большая энергии нормального состояния на 0,94 эв. Если учесть это обстоятельство, легко видеть, что величина энергии диссоциации, определенная на основании спектроскопических данных, хорошо [c.58]

    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]

    В системах с фазовыми переходами первого рода энергии Гиббса каждой из фаз (О и О ) являются различными функциями термодинамических параметров. На рис. 107 показана зависимость О и О" от температуры в таких системах. Кривые О = ЦТ) и О = /(Г) пересекаются при температуре фазового перехода T r, при которой О = О и (7 = 0. При Т < устойчивой является фаза (I), так как 0 < О , а при Г> T , - фаза (II), так как О" < G . При фазовом переходе первого рода функции О и от температуры в точке фазового перехода не имеют математических особенностей, и кривые этих функций продолжаются в обе стороны от этой точки (пунктирные кривые на рис. 107). В системах с фазовыми переходами первого рода имеется возможность существования метастабильных состояний, например переохлаждения или перегрева фаз, которые наблюдаются иногда при медленном переходе через температуру Т . Примерами фазовых переходов первого рода служат взаимные переходы [c.325]

    При фазовых переходах второго рода непрерывно изменяются и первые производные от энергии Гиббса по температуре и давлению, т. е. энтропия и объем. Для фазового перехода второго рода невозможно существование метастабильных состояний, и каждая фаза может существовать только в определенной температурной области. Пр)имерами фазовых переходов второго рода являются переходы жидкого гелия в сверхтекучее состояние, железа из ферромагнитного в парамагнитное состояние, металла из обычного в сверхпроводящее состояние, переход порядок — беспорядок в сплавах типа -латуни и др. [c.326]

    Менее глубокая впадина соответствует относительному минимуму потенциальной энергии системы и ее метастабильному состоянию или относительно устойчивому положению А шарика на дне этой энергетической ямы . Более глубокая яма соответствует абсолютному минимуму потенциальной энергии и абсолютно устойчивому положению В [c.202]

    Чтобы система могла перейти из метастабильного состояния в абсолютно устойчивое, она должна преодолеть активационный, или потенциальный барьер. Это возможно только при условии сообщения ей такой кинетической энергии, которая превосходила бы высоту потенциального барьера. [c.203]

    Метастабильное состояние связано с задержкой фазовых превращений (в результате того, что в аморфном коксе затрудняется возникновение зародышей кристаллов графита) и с возрастанием свободной энергии или термодинамического потенциала всей системы. Это возрастание, согласно данным [c.203]

    Движение лептонов (легких частиц) может происходить внутри твердого тела, в тонком периферическом слое, на поверхности, в тонком адсорбционном слое или через поток реакционной среды. Для того, чтобы вывести лептоны из стабильного или метастабильного состояния, необходима определенная энергия активации следовательно, скорости их миграции увеличиваются экспоненциально с увеличением температуры. Поэтому температура имеет заметное влияние на значения 5, Ь и Ы, которые в настоящее время однако невозможно точно рассчитать. Для оценки этих эффектов можно прибегнуть к помощи старых эмпирических правил, которые гласят, что кристаллические решетки становятся заметно более мобильными при температуре внутри твердого вещества > 0,5 Т (правило Таммана) [c.17]

    Переход в метастабильное состояние возможен, если энергия этого состояния ниже, чем энергия возбужденного синглетного состояния (рис. 39). [c.120]

    Молекулы в метастабильном состоянии не только обладают избыточной энергией, но имеют еще две свободные валентности и поэтому обладают еще более высокой реакционной способностью, чем обычные возбужденные молекулы. [c.120]

    В области расклинивающего давления Пс>П>0 (или относительного давления пара р <р<р ) каждому значению давления отвечают две возможные толщины пленки, принадлежащие а- и Р-ветвям изотермы. Термодинамически вполне устойчивым состояниям смачивающих пленок соответствует а-ветвь изотермы. Верхняя Р-ветвь изотермы отвечает метастабильному состоянию равновесия пленок. Это следует из анализа зависимости (кривая 2а на рис. 1) избыточной свободной энергии Гиббса пленки [А/ к) = к 1 [c.287]


    Молекулы в метастабильном состоянии не только обладают избыточной энергией, но имеют еще две свободные валентности и поэтому обла- [c.110]

    Обратный переход из метастабильного в возбужденное состояние затрудняется необходимостью обращения спина и затраты энергии, равной разности энергетических уровней E2- =E2 — E . Последняя может производиться только из запаса тепловой энергии твердого вещества. Не удивительно, что глубокое охлаждение замораживает этот переход (переход 4—2, рис. 40). Более вероятным становится переход 3—4 (рис. 40), в результате которого испускается квант /lvз, наблюдается фосфоресценция, длящаяся секундами. Хотя число возбужденных атомов крайне мало (10 % от общего числа атомов) и лишь около 1% их переходит в метастабильное состояние, благодаря тому, что время жизни последнего в 10 раз больше, чем время жизни возбужденного состояния, число атомов, находящихся в метастабильном состоянии, в 10 раз превышает число возбужденных атомов, т. е. достигает величину порядка 10- % от общего числа атомов. А. Н. Теренин обратил внимание на то, что метастабильное состояние во многих случаях может и не проявляться путем фосфоресценции, поскольку последняя связана с особыми, не всегда реализуемыми условиями. Представляя собой состояние валентной ненасыщенности, метастабильное состояние имеет существенное значение для фотохимического и, вообще, химического поведения вещества, в том числе, вероятно,и каталитического. [c.128]

    Еще до образования зародыша кристаллизации — частицы размером Го — проявляется характерное свойство твердого вещества — образовать твердые тела, которые могут существовать в метастабильном состоянии, т. е. при положительном значении функции (Х.2). Но знак этой функции, как мы видели, зависит от соотношения величин ее первого и второго членов. Чем прочнее межатомные связи в строении образующегося твердого тела, больше его размеры и меньше свободная поверхностная энергия, тем больше при данных условиях первый и меньше второй члены, тем выше стабильность данного твердого тела. Таким образом, о стабильности твердого тела можно судить по величине отношения объемного и поверхностного членов уравнения (Х.2)  [c.149]

    Способность находиться неопределенно длительное время в метастабильном состоянии — характернейшее свойство твердого вещества. Как мы знаем, это свойство вытекает из коллективного характера межатомного взаимодействия в твердом веществе, благодаря которому большие порции поглощаемой им энергии сразу же распределяются между его п-Ю атомами, каждый из которых, таким образом, получает чаще всего лишь небольшую добавочную энергию. В то же время, чтобы превратить одно твердое вещество в другое, имеющее иную структуру, необходимо разорвать сразу огромное количество прочных связей. Вот почему твердое тело обладает термической, радиационной, химической устойчивостью. [c.157]

    От известных процессов химического осаждения химическая сборка отличается тем, что позволяет получать твердые вещества не только периодического, но и регулярного непериодического строения. От кристаллизации этот процесс отличается тем, что позволяет осуществлять фазовое превращение, минуя высокие потенциальные барьеры, обусловленные зародышеобразованием и необходимостью разрыва особо прочных межатомных связей С — С, Si — О, В — N и т. п. Благодаря этому химическая сборка связана с термодинамическими условиями не обычного фазового перехода, а с условиями протекания химических реакций и потому осуществляется при сравнительно низких температурах и давлении. Часть избыточной энергии образования побочных продуктов конденсации (НС1, Н2О и др.) потребляется для химической сборки структурных единиц, часть аккумулируется твердым веществом в виде энергии связи, а часть рассеивается. Синтезируемое этим методом твердое вещество может иметь любую из бесчисленного множества структур, существующих при метастабильном состоянии вещества, и притом именно ту, которая необходима. [c.190]

    Возьмем полимеры — типичные атомные вещества. Как правило, они пе имеют кристаллического строения, т. е. находятся в метастабильном состоянии, отличающемся от стабильного состояния, в котором находятся кристаллы, более высоким уровнем энергии. Вот почему кристаллизация — обратимый процесс отвердевания— не может служить для воспроизводимого получения атомных твердых соединений. Для этой цели можно воспользоваться только необратимыми процессами, однако лишь такими, в которых отвердевание происходит при строгом регулировании пересыщения системы взаимодействующих веществ. Ведь индивидуальное вещество может быть получено только в том случае, когда вещество данного состава находится в определенном, присущем только этому индивидуальному соединению энергетическом состоянии. В любом другом возможном энергетическом состояний вещество данного состава будет иметь иное строение и, следовательно, представлять собой одно из множества возможных изомерных соединений.  [c.242]

    Избыточный запас внутренней энергии по сравнению с соответствующим веществом в кристаллическом состоянии. Стекла получают путем переохлаждения расплава, и поэтому они являются системами, находящимися в метастабильном неравновесном состоянии. Однако благодаря чрезвычайно высокой вязкости, затрудняющей внутреннюю диффузию, стекла в метастабильном состоянии могут существовать неопределенно долго без признаков перехода в устойчивое, кристаллическое состояние. Но вследствие избыточного запаса внутренней энергии кристаллизация стеклообразного вещества сопровождается выделением тепла и является экзотермическим процессом. [c.189]

    Метастабильное состояние равновесия. Состояние равновесия называется метастабильным, если, кроме данного состояния, возможны такие состояния равновесия, которым при заданных значениях энергии и объема системы, а также числа молей компонентов отвечают большие значения энтропии. [c.200]

    Основные факторы, влияющ,ие на соударения между метастабильными атомами и другими молекулами, указаны Ловело-ком [4]. Вероятность ионизации при таких соударениях приближается к единице, так что скорость ионизации для данного вида молекул определяется частотой соударений. Сигналы для большинства соединений определяются массой введенного пара и сравнительно мало зависят от вида вводимых молекул. Ионизация может происходить только в том случае, когда ионизационный потенциал сталкивающихся молекул близок или меньше энергии метастабильного состояния. Практически ионизационные потенциалы всех органических паров и большинства неорганических соединений меньше 11,7 эв, т. е. меньше энергии метастабильного атома аргона. Следовательно, число веществ, которые не регистрируются детектором, невелико к ним относятся Нг, N2, О2, СО2, СО, ( N)2, Н2О, а также фтороуглеводо-роды. Органические соединения метан, этан, ацетонитрил и пропионитрил, имеют ионизационные потенциалы, значительно превышающие 11,7 эв, но тем не менее они регистрируются детектором с чувствительностью, в 10—100 раз меньшей по сравнению с чувствительностью к другим соединениям. Небольшая чувствительность к ацетонитрилу делает это вещество очень удобным растворителем разбавленные растворы в ацетонитриле могут быть использованы в хроматографических колонках. [c.29]

    Аллотропические цепи. В аллотропических цепях электродами служат две модификации одного н того же металла (М и Мр), погруженного в раствор (или в расплав) его ионопроводящего соединения. При данной темпера1уре только одна из модификаций выбранного металла устойчива (если это не температура фазового превращения, при которой существуют в равновесии обе модификации), другая же находится в метастабильном состоянии. Электрод, изготовленный из металла в метг Стабильном состоянии (пусть это будет Мр), должен обладать повышенным запасом свободной энергии. Он играет роль отрицательного электрода элемента и посылает ионы металла в раствор  [c.194]

    Так, на основе модели РРК можно объяснить влияние длины волны на квантовый выход СО при фотолизе Hj O, но отсутствие данных по точному значению энергии диссоциации связи препятствует однозначному толкованию опытных данных. Зависимость от длины волны флуоресценции фотовозбуж-денного р-нафтиламина [9] также была интерпретирована как скорость спонтанной изомеризации в метастабильное состояние не способное флуоресцировать. При этом была использована модель для к Е), эквивалентная модели РРК. [c.201]

    Температура, при которой битумы становятся твердыми, принимается как темпу)атура стеклования, поскольку стекло — это типичный прим аморфйого тела. При температуре стеклования поступательное движение молекул прекра1цается, так как силы, связывающие молекулы, настолько велики, что тепловая энерг молекул для их преодоления недостаточна. Эти силы предотвращают также образование кристаллов. Как мы видели ранее, битумы находятся в метастабильном состоянии, но это любопытный вид очень стабильной метастабильности при температуре ниже точки стеклования. [c.25]

    Ртутные лампы среднего давления дают в спектре больщое число линий высокой интенсивности. Это можно объяснить заселением других уровней, отличных от 6 Pi (рис. 48). Находящиеся в этом состоянии атомы ртути частично возбуждаются в более высокие энергетические состояния при столкновениях и излучают из этих состояний, а частично дезактивируются в метастабильное состояние б Ро. С этого уровня они вновь или возбуждаются до состояния 63 1, или постепенно испускают свет длиной волны 265,4 нм. Доля энергии, превращающейся в ультрафиолетовый свет в лампах среднего давления, мало изменяется по сравнению с лампами из кого давления, однако количество ультрафиолетовой энерлии на единицу длины лампы в 50— [c.139]

    Из того факта, что энергия метастабильного уровня E несколв-ко ниже энергии у дна зоны проводимости, ясно, что энергетический зазор Е4-з=Е — Ез меньше ширины запрещенной зоны Е2-1=Е2 — Ей Следовательно, в твердом веществе, активированной примесями и находящемся благодаря этому в метастабильном состоянии, значительная часть валентных электронов (а имен- но около 0,1%) связана с атомными остовами менее прочно, чём в чистом веществе, не содержащем активирующих примесей. А. Н. Теренин установил, что преобразование электронной энергии возбуждения путем разрыва наиболее слабой валентной связи в потенциальную энергию движения атомных ядер, т. е. в вибрационную энергию, характерно для многоатомных молекул и, добавим, тем более для твердого вещества. Он назвал это явление предиссоциацией. Таким образом, поглощение света веществом при определенных условиях сопровождается разрывом валентных связей и тем самым придает веществу повышенную химическую [c.128]

    Для каждого твердого вещества мы можем установить как самое бедное энергией состояние Еман, так и самое богатое — макс (рис. 52). мин — это равновесное состояние вещества, которое почти достигается при выращивании его монокристаллов. Обратим внимание на то, что при увеличении размера твердого тела уровень его энергии несколько понижается от мин До Емин, что нам вполне понятно, так как мы знаем о существовании гиперболической зависимости величины удельной поверхности от размеров твердого тела (см. гл. X). макс — самое напряженное метастабильное состояние данного твердого вещества, которое может наблюдаться в данных условиях. Например при плавлении вещество находится в состоянии Ег, которое приближается к Еиакс, при некотором высоком давлении вещество находится в состоянии Ер, еще более близком макс. [c.157]

    В некоторых процессах энергия возбужденных молекул (атомов, радикалов) может рассеиваться в виде световой. Это светоиснускание носит общее название люминесцерщии (медленное окисление фосфора или гниющей древесины, свечение светлячков или глубоководных рыб и др.). Поглотившая квант света возбужденная молекула может практически ахгновенно (за 10" — 10 с) испустить его и дезактивироваться. Такое явление называется флюоресценцией. Однако молекулы некоторых веществ способны также к переходу в метастабильное состояние, не связанное с излучением, имеющее значительно большее среднее время жизни (вплоть до 1 с). Свечение, сопровождающее переход из метастабильного состояния в исходное, называется фосфоресценцией, а способные к нему вещества — фосфорами. Оно может продолжаться несколько секунд после прекращения облучения. [c.269]


Смотреть страницы где упоминается термин Энергия метастабильного состояния: [c.62]    [c.129]    [c.40]    [c.104]    [c.106]    [c.57]    [c.111]    [c.447]    [c.13]    [c.25]    [c.158]    [c.210]   
Курс физической химии Том 2 Издание 2 (1973) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Метастабильное состояние

Метастабильность

Энергия состояния



© 2025 chem21.info Реклама на сайте