Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос электронов и преобразование энергии

    Для оценки окислительно-восстановительной способности более удобной оказалась другая термодинамическая величина — потенциал. Это связано с уникальной особенностью данного типа реакций полуреакции окисления и восстановления можно разделить в пространстве, поскольку при переносе электронов возникает электрический ток. Следовательно, энергию химической реакции можно преобразовать в электрическую. Практически такое преобразование осуществляется в гальваническом элементе. [c.178]


    Перспективно использование ферментов как катализаторов переноса электрона в электрохимических элементах, осуществляющих преобразование химической энергии в электрическую. Попытки создания такого рода систем известны. Например, в работах [82, 83], изучали свойства анода на основе иммобилизованной на платину глюкозооксидазы. Топливный элемент, использующий в качестве топлива глюкозу, а в качестве окислителя— кислород, растворенный в крови, предполагается применить для электростимуляции сердечной деятельности [84]. [c.91]

    Заключение. В процессе фотосинтеза происходит превращение энергии света в биохимическую энергию. Первичное действие света состоит в том, что в фотохимических реакционных центрах электроны донора переносятся на акцептор в термодинамически невыгодном направлении. По крайней мере часть электронов возвращается по электрон-транспортной цепи к реакционным центрам. Благодаря особому расположению компонентов электрон-транспортной системы в мембране это сопровождается направленным переносом протонов и созданием протонного потенциала. Таким образом, аппарат фотосинтеза-это прежде всего протонный насос, приводимый в действие светом. Протонный потенциал обеспечивает возможность преобразования энергии путем фос- [c.392]

    Разумеется, что увеличение энергетического выхода не может продолжаться безгранично. В той области длин волн, где энергия кванта является недостаточной для переноса электрона на более высокий энергетический уровень, выход становится равным нулю. Этим объясняется возникновение нисходящей ветви на рис. 3. Уменьшение квантового выхода наблюдается также в случае преобразования при флуоресценции длинных волн в короткие. [c.18]

    Разумеется, что нарастание энергетического выхода не может продолжаться безгранично. В той области длин волн, где энергия кванта является недостаточной для переноса электрона на более высокий энергетический уровень, выход становится равным нулю. Этим объясняется возникновение нисходящей ветви (рис. 2). Уменьшение квантового выхода имеет место в случае преобразования при флуоресценции длинных волн в короткие. Вторая формулировка закона Вавилова гласит [10] .Фотолюминесценция может сохранять постоянный квантовый выход, если возбуждающая волна преобразуется, в среднем, в более длинную, чем она сама. Наоборот, выход люминесценции резко уменьшается при обратном превращении длинных волн в короткие . Этот закон [c.11]


    Таковы основы современных гипотез о механизме обратимого фотовосстановления хлорофилла, сенсибилизации им процессов переноса электрона (водорода) и связанного с ними преобразования электромагнитной энергии света в химическую энергию продуктов восстановления СО2. [c.149]

    Исследования с помощью флеш-фотолиза процесса переноса электрона между триплетным состоянием хлорофилла и хинонами в полимерных пленках и липидных бислоях указывают путь построения систем, пригодных для преобразования солнечной энергии, поскольку эффективность образования радикалов лишь немного ниже по сравнению с гомогенным раствором, но обратный перенос электрона происходит значительно медленнее из-за возрастания вязкости. [c.70]

    Осн. научные работы — в области хим. кинетики и катализа. Обнаружил новый тип хим, превращений в ТВ. телах — туннельные реакции переноса электрона на большие расстояния. Изучал спиновый обмен -- физ. процесс, моделирующий хим. Р-1ЩИ. Развил ряд сопрем, физ, методов исследования катализа (ЭПР, ЯМР, спектроскопия дальней тонкой структуры рентгеновских спектров поглощения), Обнаружил и исследовал активные промежуточные комплексы для ряда гомогенных каталитических р-ций. Выяснил особенности строения хим. центров на поверхности ряда важных гетерогенных катализаторов. Внес существенный вклад в разработку каталитических методов преобразования солнечной энергии. [c.171]

    На рис. 7-34 показаны уровни окислительно-восстановительного потенциала на различных участках дыхательной цепи. Резкий перепад имеет место в пределах каждого из трех главных дыхательных комплексов. Разность потенциалов между любыми двумя переносчиками электронов прямо пропорциональна энергии, высвобождаемой при переходе электрона от одного переносчика к другому (рис. 7-34). Каждый комплекс действует как энергопреобразующее устройство, направляя эту свободную энергию на перемещение протонов через мембрану, что приводит к созданию электрохимического протонного градиента по мере прохождения электронов по цепи. Такое преобразование энергии можно прямо продемонстрировать, включив по отдельности любой изолированный комплекс дыхательной цепи в липосомы (см. рис. 7-25). В присутствии подходящего донора и акцептора электронов такой комплекс будет переносить электроны, что приведет к перекачиванию протонов через мембрану липосомы. [c.455]

    Одна из важнейших функций биологических мембран состоит в обеспечении трансформации энергии, сопряженной с преобразованием ее из одного вида в другой. Это, собственно, и составляет основу биоэнергетических процессов в клетке. Как известно, энергия, необходимая для различных видов жизнедеятельности клетки, утилизируется в виде энергии химических связей молекулы АТФ, синтез которой в живой природе осуществляется главным образом в биологических мембранах митохондрий и хлоропластов (хроматофоров). Во всех этих системах движущей силой является электронный поток, который генерируется в митохондриях за счет окисления субстрата и в хлоропластах - за счет энергии света. Здесь перенос электрона сопряжен с транслокацией протонов и синтезом АТФ в АТФ-синтезе. [c.165]

    Исследование механизмов преобразования энергии при дыхании и фотосинтезе в значительной степени основано на анализе кинетики окислительно-восстановительных реакций переносчиков электронов в окислительной (дыхательной) и фотосинтетической электронтранспортных цепях. Эти переносчики расположены в энергопреобразующих мембранах и, как правило, объединены в мультиферментные комплексы строго определенного состава и структуры, в которых задана последовательность переноса электронов от одной молекулы к другой. Для анализа транспорта электронов в таких комплексах неприменимы как обычный кинетический анализ, основанный на предположении о столкновительном характере взаимодействия молекул, так и обычный термодинамический анализ, поскольку скорость переноса электронов в комплексах не зависит от объемной концентрации индивидуальных переносчиков, а определяется концентрацией комплексов в соответствующих состояниях. [c.3]

    Глава 1 ПЕРЕНОС ЭЛЕКТРОНОВ И ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ [c.6]

    Использование ферментов как катализаторов переноса электронов в электрохимических элементах, осуществляющих преобразование химической энергии в электрическую, достаточно перспективно. Попытки создания такого рода систем известны. Топливный элемент, в котором топливом служит глюкоза, а окислителем — кислород, растворенный в крови, предполагается применить для электростимуляции сердечной деятельности. [c.80]

    Предположительный механизм трансформации в водной среде акустической волны в электромагнитную может быть связан с преобразованием энергии в джозефсоновских структурах ассоциатов воды в результате возникновения под воздействием акустической волны вырожденных электрон-фононных состояний. Результирующим действием колебательного возбуждения ассоциатов воды является возбуждение в сверхпроводящих структурах ассоциатов электромагнитных волн, оказывающих на ион-радикалы потенцирующее действие и промотирование переноса электронов. Как следствие в результате изменения энергии связи и концентрации ион-радикалов происходит перераспределение формы импульса хемилюминесценции в сторону меньших времен реакции, что эквивалентно увеличению амплитуды импульса. [c.202]


    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]

    Прямой фотолиз воды. не. подходит для преобразования солнечной энергии, поскольку вода не поглощает в видимом спектральном диапазоне. Энергетический порог расщепления БОДЫ до радикальных фрагментов И и ОН примерно соответствует длине волны света Я = 240 нм, но даже на этой длине волны свет поглощается слабо. В то же время ионный окислительно-восстановительный механизм требует переноса четырех электронов. Для переноса каждого электрона необходима свободная энергия 472/4=118 кДж/моль, соответствующая энергии поглощаемого кванта света с длиной волны примерно 1000 нм в ближнем ИК-диапазоне (или, в терминах потенциала, около 118 000/96 500=1,22 В). Такое многоквантовое окислительновосстановительное расщепление воды представляется многообещающим. Вопрос заключается в том, как его осуществить. [c.268]

    Гидролазы. В данной таблице представлены 7 ферментов этого класса, четыре из которых относятся к подклассу гид-ролаз ангидридов кислот (3.6.). Представляется удивительным, что практически ни для одного из ферментов обширнейшего подкласса пептигидролаз (3.4) флип-флоп -механизм не показан [1]. Одним из первых ферментов, для которых был предложен этот механизм катализа, является относящаяся к классу гидролаз щелочная фосфатаза. Однако в настоящее время именно для этого фермента возможность работы по флип-флоп -механизму усиленно оспаривается [36] Особенностью неорганической пирофосфатазы (3.6.1.1.) является обнаружение флип-флоп -механизма фосфорилирования субъединиц в некаталитическом центре [35]. Важным мембранным ферментом, в котором реализуется флип-флоп -механизм, или по терминологии авторов, попеременности мест связывания [50], является Н-АТФ-аза, осуществляющая преобразование энергии цепи переноса электронов в энергию макроэргических связей молекул АТР. Этот же механизм оказался применим и к другим мембранным АТР-азам — Ка, К и Са-зависимым [47, 62, 74, 135, 150], подробно рассмотренным также в обзоре [4]. [c.138]

    Fe +/Fe + она равна 0,7 В, равновесие практически полностью сдвинуто влево. Разумеется, между двумя одинаковыми электродами нет разности потенциалов. При освещении возникает возбужденное состояние (R +), и теперь перенос электрона к Ре + может вывести обе системы из равновесия. Однако существует обратная реакция, которая в конечном счете приводит к установлению стационарного состояния на свету. Хотя потенциалы на каждом из электродов могут номинально изменяться, нельзя различить разности потенциалов, если освещение постоянно. В то же время, если падающий свет поглощается ближе к одному электроду, чем к другому, можно наблюдать фотоиндуцированное напряжение, так как возникает нечто вроде концентрационного элемента. Возникновение и знак фотоиндуцированного напряжения зависят от того, у какой из двух окислительно-восстановительных пар быстрее проходит обратная реакция на электродах, т. е. от электродной кинетики. У таких приборов эффективности преобразования энергии малы (<1%) преимущественно из-за неудовлетворительной кинетики переноса электронов. Высокоэнергетические окислительновосстановительные продукты, возникающие при освещении, стремятся вернуться в исходное состояние с помощью обратного электронного переноса, а не желаемого переноса электронов через нагрузку во внешней цепи. [c.273]

    Благодаря присутствию во внешней среде СОг оказался возможным фотосинтез. Бактериальный фотосинтез, а затем и фотосинтез зеленых растений развивались примерно 3—2 10 лет назад. Фотосинтез состоит в поглощении света и преобразовании его энергии в химическую энергию биологических молекул. Для этого потребовались поглощающие свет соединения, в частности, содержащие порфириновые циклы — хлорофилл и цитохромы. В результате поглощения квантов света в хлорофилле электроны системы переходят на более высокие уровни энергии. Далее работает цепь переноса электронов, главными участниками которой являются окислительно-восстановительные ферменты — цитохромы. Запасенная первоначально в хлорофилле энергия выделяется в биологически полезной форме — в АТФ и НАДФ. Происходит фотофосфорилирование. [c.53]

    У прокариот известны три способа получения энергии разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта фуппа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфо-рилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД Н2, восстановленный фер-редоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Нз). [c.94]

    Левич, Догонадзе и Чизмаджев рассмотрели в классическом и квантовомеханическом приближениях электрохимические и химические реакции переноса электрона. Ниже дано краткое изложение только теории химических реакций. В рассматриваемых реакциях предполагается, что углы и равновесные длины связей во внутренней координационной сфере не изменяются, а среда за пределами первой (внутренней) координационной сферы реагента рассматривается как непрерывный диэлектрик. Дается квантовомеханический расчет константы скорости в рамках теории возмущений при предположении, что перекрывание электронных орбиталей реагентов мало. Движение вектора поляризации рассматривается при помощи некоторого гамильто ниана. Было использовано уравнение Шредингера в одноэлектронном приближении, причем уравнение было записано в такой форме, чтобы электронная волновая функция была чувствительна к конфигурации ядер в области пересечения поверхностей потециальной энергии реагентов и продуктов. Используется преобразование Фурье для части гамильтониана, описывающего движение ядер. При выводе выражения для константы скорости реакции применяется квантовомеханическое рассмотрение атомной поляризации. [c.305]

    Особое место в методах оптической накачки активных сред ИК-лазеров занимает накачка некогерентным излучением импульсной лампы, ставшая возможной благодаря использованию межмолекулярного электронно-колебательного переноса энергии Е—V-nepeHo ) [87—89]. В этом явлении, механизм которого далеко еще не ясен, электронно-возбужденный атом в столкновениях с молекулой отдает свою энергию на возбуждение молекулярных колебаний, причем иногда с довольно высокими вероятностью и селективностью. Эффективность такого преобразования энергии зависит прежде всего от точности резонанса между возбужденным электронным уровнем атома и не слишком высоко возбужденным колебательным уровнем молекулы. Поэтому атом брома в электронном состоянии 4 Pi/2 с энергией 3685 см , выбранный авторами работ [87—89] в качестве донора энергии, — хороший партнер в процессе электронно-колебательного переноса энергии. [c.184]

    Многие бактерии, однако, и в анаэробных условиях используют окислительное (электрон-транспортное) фосфорилирование при этом происходит перенос электронов, получаемых при расщеплении субстрата, по (укороченной) электрон-транспортной цепи на экзогенные (добавленные в питательную среду) или эндогенные (образующиеся при разложении субстрата) акцепторы. Акцепторами электронов могут быть ионы нитрата, сульфата, карбоната и фумарата, а также сера соответствующие виды бактерий объединяют в физиологические группы нитратвос-станавливающих, денитрифицирующих, сульфатредуцирующих, метаногенных и ацетогенных бактерий, а также бактерий, восстанавливающих серу. Все эти бактерии играют важную роль в природном балансе. Так как фосфорилирование, сопряженное с транспортом электронов, долгое время считалось характерной принадлежностью аэробного дыхания, то, говоря о преобразовании энергии при окислительном фосфорилирова-нии в анаэробных условиях, в настоящее время пользуются также термином анаэробное дыхание (см. гл. 9). [c.248]

    Нитратное дыхание восстановление нитрата до нитрита. Для целого ряда факультативно-анаэробных бактерий Enteroba ter, Es heri hia oli и др.) нитрат может служить конечным акцептором водорода в процессе транспорта электронов, поставляющем энергию. Этот вид нитратного дыхания отличается от денитрификации тем, что здесь только первая ступень, а именно восстановление нитрата до нитрита с помощью нитратредуктазы А, сопряжена с переносом электронов и преобразованием энергии  [c.308]

    Рассмотрев реакции связывания углерода, вернемся теперь к вопросу о том, как в процессе фотосинтетического переноса электронов, протекающем в хлоропласте, образуются АТР и NADH, необходимые для синтеза углевода из СО2 и Н2О (см. рис. 7-41). Необходимая энергия извлекается из солнечного света, поглощаемого молекулами хлорофилла (рис. 7-46). Процесс преобразования энергии начинается с возбуждения молекулы хлорофилла квантом света (фотоном), сопровождающегося переходом электрона на более высокий энергетический уровень. Такая возбужденная молекула нестабильна и стремится вернуться к исходному состоянию одним из трех способов 1) в результате превращения избыточной энергии в тепло ( в молекулярное движение), либо в тепло и свет с большей длиной волны ( флуоресценция) в том случае, когда лучистая энергия поглощается отдельной молекулой хлорофилла в растворе 2) в результате передачи энергии (но не электрона) непосредственно соседней молекуле хлорофилла при помощи процесса, называемого резонансной передачей энергии или 3) путем передачи высокоэнергетического электрона одной из ближайших молекул (акцептору электрона) и возвращения в первоначальное состояние в результате принятия низкоэнергетического электрона от какой-то другой молекулы (донора электрона, рис. 7-47). Последние два механизма играют ключевую роль в фотосинтезе. [c.467]

    Фотохимическая работа, выполняемая при фотосинтезе, в конечном счете сводится к разложению молекул воды или какого-нибудь ее аналога, например НгЗ. Однако, прежде чем это произойдет, физическая энергия уловленных фотонов должна быть как-то видоизменена, преобразована в химическую энергию. В осуществлении этого этапа фотосинтеза, т. е. этапа, сводящегося к преобразованию энергии, участвует лишь небольшая часть всех пигментных молекул, сосредоточенная в фотохимически активных центрах хлоропластов. Энергия, поглощенная хлорофиллом и другими фотоактивированными пигментами, передается молекулам хлорофилла, находящимся в этих фотохимически активных центрах, или ловушках. В результате отдельным электронам сообщается достаточное количество энергии для того, чтобы они могли перейти от молекул хлорофилла в фотохимически активных центрах к другим, находящимся поблизости молекулам, к так называемым переносчикам электронов. Переносчик поглощает определенную часть этой энергии активации и передает электрон следующему перенос-чи1 , где тот же процесс повторяется. В хлоропластах различ ные переносчики электронов размещены на мембране или внутри мембраны и образуют здесь некий ряд, в пределах которого они располагаются в соответствии с их способностью при  [c.118]

    В задачу биофизики входит выяснение механизмов начальных стадий, которые следуют непосредственно за поглощением кванта света. Как мы увидим, несмотря на большое разнообразие фотобиологических эффектов, именно начальные этапы преобразования энергии света характеризуются общими молекулярными механизмами. В основе первичных процессов фотосинтеза лежит сложная совокупность окислительновосстановительных реакций переноса электрона в элек-трон-траспортной цепи (ЭТЦ). [c.158]

    Если до самого последнего времени при анализе кинетики переноса электронов приходилось пользоваться гипотетическими схемами с неизвестной стехиометрией компонентов, то выделение цитохромпых комплексов из пурпурных бактерий приводит к качественно новому уровню понимания процессов преобразования энергии при циклическом транспорте электронов. [c.31]

    В результате фотогенерации электронно-дырочных пар в приповерхностной области освещаемого полупроводника формируются квазиуровни неосновных и основных носителей fp и F . Поскольку Fp < Fredox, а F F > Fredox, при освещении должны ускоряться как прямая, так и обратная реакции в окислительно-восстановительной системе. При замыкании цепи ячейки на внешнюю нагрузку электроны из полупроводника через внешнюю цепь переносятся на металлический катод ячейки, где восстанавливают Sei до Se дырки же переходят из полупроводникового фотоанода в раствор, в результате чего ионы Se окисляются до Sei . Состав раствора в целом не изменяется, через внешнюю цепь ячейки идет ток, т. е. происходит преобразование энергии квантов света в электрическую энергию. В условиях закрепления границ зон максимальное значение фр , , т.е. фотопотенциал при разомкнутой внешней цепи, равняется по абсолютной величине, как видно из рис. 21,6, значению скачка потенциала в слое пространственного заряда Os , т.е. [c.46]

    Согласно современным представлениям (Кагава, 1985 Скулачев, 1988), сопрягающие ионы Н+ и N3+ могут участвовать по крайней мере в 5 различных процессах преобразования электрохимического потенциала в три вида полезной работы в зависимости от типа мембранных структур. При этом под химической работой подразумевают синтез АТФ, синтез неорганического пиро-фосфата, перенос восстановленных эквивалентов в направлении более отрицательных редокс-потенциалов, обратный перенос электронов в дыхательной цепи. Под механической работой и.меют в виду преобразование электрохимической энергии в движение, на-при.мер вращение жгутиков одноклеточных организ.мов. Осмотическая работа связана с транспортом веществ против градиента их концентрации. [c.121]

    Значительные результаты достигнуты в изучении молекулярных механизмов преобразования энергии света при фотосинтезе. Установлено, что этот процесс начинается с поглощения энергии света (фотонов) пигментами антенны н миграции энергии возбуждения к реакционным центрам, где за пикосекунды происходит преобразование ее в химическую энергию изучаются ультрамолекулярная структура реакционного центра и функции его компонентов решается задача построения искусственных реакционных центров большое внимание уделяется изучению механизма переноса электронов в фотосинтезирующих системах. [c.232]

    Как следует из уравнения AG = nFAE, при Д =312 мВ AG для каждого из главных перепадов потенциала должна составлять —14 000 кал/моль. Это значение можно сравнить с AG для синтеза АТР при тех же концентрациях [АТР], [ADP] и [Рг]. Если намеренно поддерживать низкую концентрацию [ADP], так чтобы отношение [ATP]/[ADP] было очень высоким, тогда ДС для синтеза АТР должна составлять +14 600 кал/моль, как это можно рассчитать, принимая для реакции ATP ADP-hP,- AG°=-f8400 кал/моль-Примечательно, что свободная энергия, которая становится доступной в результате процесса переноса электронов через каждый комплекс, приблизительно равна энергии, требующейся для синтеза АТР в этих условиях, т. е. такое преобразование энергии при наличии необходимых средств может стать легко обратимым. [c.434]

    Ферми-системы с бозе-конденсацией зарядов представляют собой пространственно-коррелированную структуру куперовских пар, элек-трон-дырочных возбуждений и фононов [2]. Роль фононов в динамике сверхпроводников заключается в обмене энергией между электронами неравновесного сверхпроводника и внешней средой. Прямое влияние фононов определяет процессы поглощения рассеянной энергии среды, обратное - проявляется в виде преобразования энергии электронов в электромагнитную энергию. Особое значение процессы преобразования энергии, осуществляемые в сверхпроводниках, приобретают в связи с явлениями стимуляции сверхпроводимости в связанных состояниях жидкофазных систем и переноса электронов в виде электромагнитных волн. [c.130]

    СН2О) в этом уравнении представляет собою углевод. Механизм фотосинтеза сложен и требует взаимодействия многих макромолекул и малых молекул. У зеленых растений фотосинтез протекает в хлоропластах - специализированных органеллах. Аппарат преобразования энергии является интегральным компонентом системы мембран в тилакоидах хлоропласта (рис. 19.1). Первый этап фотосинтеза - это поглощение света молекулой хлорофилла. Энергия переносится от одной молекулы хлорофилла к другой, пока не достигает молекулы с особыми свойствами в участке, называемом реакционным центром. Превращение света в химически используемую энергию происходит в реакционных центрах двух видов. На самом деле для осуществления фотосинтеза требуется кооперирование двух световых реакций. Одна из них, называемая фотосистемой /, генерирует восстановительную силу в форме NADPH, тогда как другая, называемая фотосистемой II, расщепляет воду с выделением О2 и генерирует восстановитель. Протонный градиент через мембрану тилакоида генерируется, когда выделяется О2 и когда поток электронов проходит по электрон-транс-портной цепи, связывающей две фотосистемы. Синтез АТР, как и при окислитель- [c.180]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    ФОТОЭЛЕКТРОХИМИЯ, изучает взаимное преобразование световой и электрич. энергии в системе электрод — электролит. Возникновение фототока (фотопотенциала) при освещении электрохим. ячейки м. б. обусловлено 1) фотохим. р-циями в электрол1гге или возникновением в нем возбужд. молекул 2) генерацией неравновесных электронов и дырок в полупроводниковых электродах (см. Электрохимия полупроеодников) 3) фотоэмиссией электронов из электродов в р-р электролита 4) фотодесорбцией адсорбированных на электроде частиц (ионов, молекул) с переносом заряда между адсорбатом и электродом. Обратное явлекне [c.635]


Смотреть страницы где упоминается термин Перенос электронов и преобразование энергии: [c.68]    [c.12]    [c.319]    [c.77]    [c.245]    [c.390]    [c.21]    [c.6]   
Смотреть главы в:

Транспорт электронов в биологических системах -> Перенос электронов и преобразование энергии




ПОИСК





Смотрите так же термины и статьи:

Перенос энергии электронной

Преобразование

Электроны перенос энергии

Энергия электрона

Энергия электронная



© 2025 chem21.info Реклама на сайте