Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенность эффективная

    При выемке угля часть его остается в выработанном пространстве в виде потерь. В результате адсорбции кислорода на поверхности пор и трещин в угле он окисляется, и при определенных условиях может возникнуть саморазогревание угля. Эффективность предварительного увлажнения как профилактического мероприятия зависит от того, насколько полно заняты жидкостью имеющиеся в пласте поры и трещины — эффективность насыщения. Эффективность насыщения можно оценить по снижению адсорбции кислорода углем после обработки его растворами. [c.199]


    Инкубировать при температуре 56°С в течение 1-3 часов (лучше 12-14 часов). Длительность инкубации определяется характером объекта давностью пятна и его насыщенностью. Эффективность очистки ДНК повышается, если на время инкубации поместить пробирку на качающуюся платформу. [c.106]

    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]

    С точки зрения теоретического обобщения условий протекания процесса ректификации, речь идет об определении соотношений ряда переменных величин, которыми, с одной стороны, являются веса и составы контактирующих потоков на различных ступенях процесса, а с другой,—тепловые свойства, температура и теплосодержания этих потоков паров и флегмы на различных уровнях по высоте колонны. Эти соотношения в общем виде выводятся аналитическим путем и наиболее просто и удобно представляются графически на рассмотренной ранее тепловой диаграмме, дающей теплосодержания единицы веса насыщенных фаз в функции их составов. На той же диаграмме путем проведения семейства конод или путем ее сопоставления с изобарными равновесными кривыми кипения и конденсации оказывается возможным представлять графически условия равновесного сосуществования паровых и жидких фаз, и это обстоятельство делает их применение к анализу работы ректификационной колонны особенно эффективным. [c.69]

    Эффективность процесса абсорбции можно охарактеризовать и коэффициентом насыщения, представляющим собой отношение количества фактически поглощенного компонента к тому количеству, которое было бы поглощено в случае противотока при максимально возможном насыщении жидкости, т. е. когда концентрация уходящей жидкости Хр(у ) находилась бы в равновесии с концентрацией поступающего газа у . [c.79]


    Для повышения эффективности процесса абсорбции можно использовать предварительное насыщение тощего абсорбента газами из абсорбера. [c.160]

    Процесс Хай нес . Сероводород адсорбируется на слое молекулярного снта до насыщения, затем слой регенерируется горячим SO2 из газа сжигания части серы. Прп регенерации H2S реагирует с SO2 с образованием серы. Молекулярное сито при этом служит катализатором. Газы регенерации охлаждаются и сера конденсируется. Для повышения эффективности процесса давление в адсорбере должно быть средним или высоким, а очищаемый газ должен содержать минимальное количество тяжелых углеводородов. [c.197]

    Рассмотрим одномерные течения двух несжимаемых жидкостей в недеформируемой однородной пористой среде. Остальные предположения остаются прежними. Покажем, что в этом случае выведенная в 3 система уравнений может быть сведена к одному уравнению для насыщенности и является обобщением (8.11). Знание распределения насыщенности в пласте позволит проанализировать эффективность вытеснения нефти (или газа) несмешивающейся с ней жидкостью. [c.257]

    Вследствие недооценки опасности десорбции и испарения взрывоопасных продуктов не всегда принимаются эффективные меры по предупреждению розлива из аппаратуры насыщенных взрывоопасными газами растворов в ЛВЖ, что неоднократно служило причиной серьезных аварий в химических производствах. [c.130]

    Большая разница в температурах кипения и давлениях насыщенных паров антидетонатора и выносителя может служить причиной нарушения оптимального соотношения между ними при испарении бензина. Для эффективного выноса соединений свинца необходимо сочетание антидетонаторов и выносителей по возможности с более близкими температурами кипения. В этом отношении оптимальными композициями являются ТМС и дибромэтан, ТЭС и дибромпропан. [c.174]

    На рис. 33 приведены данные эффективности охлаждения воздуха, имеющего начальную температуру = 120°С. Как видно, наиболее эффективно достигается охлаждение воздуха водой. Максимально возможное снижение температуры воздуха зависит от температуры насыщения при данном давлении. Испарением в потоке воздуха 1% воды достигается снижение температуры смеси на 24°С. [c.55]

    Наиболее эффективным по снижению температуры нагнетаемого воздуха является адиабатический процесс сжатия насыщенного воздуха (кривая I, рис. 77). Так, например, при сжатии насыщенного воздуха в I ступени исследуемого компрессора температура нагнетаемого воздуха не должна превышать 48—53°С при С=2,97- 3,07. [c.185]

    На рис. 139 показана принципиальная схема переработки компрессорного конденсата. Из колодца 1 конденсат подается в систему отстойных баков 2, где происходит самая грубая его очистка — снимается поверхностная пленка масла. При этом содержание масла в конденсате снижается до 120—150 мг/л. После отстойников конденсат поступает во флотатор 3. Флотация основана на искусственном насыщении очищаемой воды пузырьками воздуха, которые прилипают к частицам масла или других загрязнений, способствуя перемещению их из объема воды на ее поверхность. Флотационная очистка идет во много раз быстрее, чем при отстаивании, и более эффективна. При напорной флотации воздух растворяется в воде под давлением, размер пузырьков не превышает 100—200 мкм. Пузырьки всплывают медленно, не нарушая спокойного состояния жидкости. Эффективность флотационной очистки увеличивается, если она сочетается с предварительной коагуляцией. В качестве [c.332]

    Обеспечение оптимальной скорости реакции посредством отвода тепла без резких локальных подъемов температуры в значительной степени зависит от эффективности перемешивания реагентов. Нитрование в жидкой фазе проводят в системах, состоящих из органической (сырье и нитропроизводное) и неорганической (нитрующая смесь) фаз, которые очень слабо смешиваются. Нитрование протекает в обеих фазах, скорость его в кислой фазе в несколько раз больше, чем в органической. Насыщение кислой фазы органическим соединением осуществить тем легче, чем больше поверхность контакта между реагентами, это достигается эмульгированием реакционной смеси. [c.303]

    По мере понижения температуры, наряду с уменьшением давления насыщенных паров, сокращается абсолютная разница по этому показателю между различными бензинами, понижается эффективность компонентов в повышении абсолютного значения давления насыщенных паров бензина. [c.186]

    Следует отметить, что с понижением температуры относительная эффективность бутана заметно повышается. Так, при добавлении 7% бутана в бензин термического крекинга давление насыщенных паров при температуре —20° С повышается примерно в 2 раза. Эффективность газового бензина и изопентана при температуре —20° С значительно ниже. Этими результатами, очевидно, и объясняется высокая эффективность бутана при улучшении пусковых свойств бензинов. [c.187]

    IX-1-5. Значения эффективной поверхности контакта фаз. При орошении насадочной колонны жидкостью толщина и скорость жидкостного слоя изменяются от точки к точке по поверхности насадки. В случае физической абсорбции газа жидкостью на тех участках, где движение жидкости замедлено или ее слой очень тонок, может происходить практическое насыщение абсорбируемым газом, вследствие чего вклад этих участков в общую скорость абсорбции невелик. С другой стороны, если рассматривать не абсорбцию, а испарение орошающей жидкости в поток газа, то следует ожидать, что эффективный вклад различных участков поверхности, покрытой жидкостью, в суммарную скорость испарения будет практически одинаковым. Значит, поверхность контакта жидкости и газа, эффективная для испарения ( смоченная поверхность ), больше поверхности, эффективной для физической абсорбции газа. [c.215]


    Далее, представляется вероятным, что в пенах с низким содержанием жидкости, существующих, например, на ситчатых тарелках, имеются тонкие пленки, которые оказываются насыщенными газом при его физической абсорбции, а значит, перестают вносить заметный вклад в общую скорость абсорбции (как это обсуждалось выше применительно к насадочным колоннам). В то же время, если жидкость представляет собой раствор реагента с высокой емкостью по абсорбируемому газу, то вклад таких тонких пленок в скорость абсорбции существенен. Отсюда следует, что величины эффективной межфазной поверхности для абсорбционных процессов различных типов могут быть не одинаковыми. Применительно к пенам это не доказано, хотя, как следует из дискуссии в разделе IX-1-5, в насадочных колоннах это явление несомненно существует. [c.225]

    Наряду с четвертичными ониевыми солями в качестве катализаторов используются и краун-эфиры [43—45, 48]. В табл. 3.4 представлены данные об эффективности различных катализаторов при реакции 5-молярного избытка водного насыщенного раствора иодида щелочного металла с н-октилбромидом в присутствии 0,05 мол. экв. соответствующего катализатора. [c.110]

Таблица 3.4. Эффективность различных катализаторов в реакции К( Na) 1 - -н-октилбромид 5-молярный избыток водного насыщенного раствора соли щелочного металла, 0,05 мол. экв. катализатора Таблица 3.4. <a href="/info/1448634">Эффективность различных</a> катализаторов в реакции К( Na) 1 - -н-октилбромид 5-молярный <a href="/info/348318">избыток водного</a> <a href="/info/1568635">насыщенного раствора соли</a> <a href="/info/6862">щелочного металла</a>, 0,05 мол. экв. катализатора
    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]

    В табл. 11.2 приведены результаты, полученные при исследовании объемных эффектов замораживания при —8°С образцов одного из латексов, различающихся степенью адсорбционной насыщенности поверхности частиц эмульгатором [529]. Снижение плотности упаковки адсорбционного слоя эмульгатора приводит к уменьшению эффективной толщины прослоек незамерзающей воды у поверхности латексных частиц. [c.192]

    После ввода потока газовой среды в адсорбер происходит резкое повышение температуры во входных участках. В последующий промежуток времени температурный профиль непрерывно перемещается в направлении потока. За первой зоной теплообмена перемещается вторая, в кбторой происходит охлаждение адсорбента до температуры входящего газа и полное его насыщение. Эффективность работы адсорбера в большей степни вависит от скорости перемещения зоны теплообмена, что необходиг.ю учитывать при конструировании, особенно, в связи с тенденцией увеличения мощности и габаритов аппаратуры. [c.116]

    Предпринимались попытки взвешивать количество насыщенного пара, адсорбированного на твердом теле при комнатной температуре. Бенеши, Боннар и Ли [48] разработали удобный метод определения объема пор катализатора, который, по-видимому, применим к электродам. Согласно их методу, после достижения равновесия образца с парами раствора четыреххлористого углерода, содержащего 13,1 об.% гексадекана, с помощью взвешивания определяли количество СС1 , адсорбированного образцом. Добавление нелетучего гексадекана приводило к тому, что давление пара составляло 95% давления чистого СС1 в результате удавалось обойтись без взвешивания конденсированного пара при давлении насыщения. Эффективный радиус пор, ниже которого все поры оказываются заполненными, можно рассчитать по уравнению Кельвина [уравнение (10)], как было указано в разд. II, Б, 5. Этот радиус можно представить в виде [c.361]

Рис. 26.6. Схема ДЗПТ в поперечном сечении, иллюстрирующая влияние изменения напряжения на инверсионный и обедненный слои, а напряжение стока очень мало б напряжение стока достаточно велико, чтобы вызвать значительное изменение толщины инверсионного и обедненного слоев в напряжение стока выше напряжения насыщения эффективная длина канала уменьшилась от Ь до Г, относительно у = О в истоке (по данным [3]). Рис. 26.6. Схема ДЗПТ в <a href="/info/3798">поперечном сечении</a>, иллюстрирующая <a href="/info/1794716">влияние изменения напряжения</a> на инверсионный и обедненный слои, а напряжение стока <a href="/info/472464">очень мало</a> б напряжение стока достаточно велико, чтобы вызвать значительное <a href="/info/56091">изменение толщины</a> инверсионного и обедненного слоев в напряжение стока <a href="/info/1726257">выше напряжения</a> насыщения эффективная <a href="/info/929646">длина канала</a> уменьшилась от Ь до Г, относительно у = О в истоке (по данным [3]).
    Глубина переработки нефти (ГПН) — показатель, характери — зующий эффективность использования сырья. По величине ГПН можно косвенно судить о насыщенности НПЗ вторичными процессами и структуре выпуска нефтепродуктов. Разумеется, что НПЗ с высокой долей вторичных процессов располагает большей возможностью для производства из каждой тонны сырья большего коли — чиства более ценных, чем нефтяной остаток нефтепродуктов и, JLeдoвaтeльнo, для более углубленной переработки нефти. [c.248]

    Пример П.З. Исходная углеводородная смесь, состоящая йз раствора 80 кмоль летучего компонента а (н-гентана, ЛГд=100) н 20 кмоль практи-ческп нелетучего тяжелого масла и> (ЛГш=400), подвергается постепенной перегонке при атмосферном давлешш и температуре 100,0 °С, при которой давление насыщенных паров к-гептана Рд=0,106124 МПа. Требуется найтп время, в теченце которого содержаппе летучего компонента в остатке перегонки понизится до 5 мол. %, еслп расход водяного пара составляет 20 кмоль/ч, эффективность =0,9, а коэффициент активности уа -гептана для условий перегонки можно принять равным единице. [c.82]

    На рис. 80 показана схема утилизации тепла дымовых газов печей шатрового типа для подогрева воздуха, производства водяного пара и его перегрева. Такая схема, более эффективная по сравнению с другими схемами, обеспечивает максимальное использование тепловой энергии дымовых газов и одновременно способствует повышению к.п.д. печи. Вода из заводской линии через теплообменник 10 поступает в паросборник 9. Насосом 8 нагретая вода направляется в котел-утилизатор 5, расположенный в борове. Оттуда пароконденсатная смесь поступает в паросборник 9. Насыщенный пар с верха паросборника 9 направляется в пароперегреватель 2, расположенный в конвекционной камере печи. Атмосферный воздух забирается вентилятором 4 и направляется через калориферы 6 в рекуператор 5. [c.219]

    Различные конструктивные мероприятия, увеличивающие теплообмен (например, увеличение эффективной поверхности путем оребрения) должны осуществляться на стороне меньшего коэффициента теплоотдачи. Это производится, например, у газопагрева-теля, в котором газ нагревается насыщенным паром. В данном случае не имеет значения, происходит ли на стороне конденсирующегося пара пленочная конденсация или капельная, несмотря на то, что при капельной конденсации коэффициент теплоотдачи в 10 раз больше. Если вычислить коэффициент теплопередачи в этих [c.155]

    Наща страна занимает ведущее положение в развитии эффективных методов разработки нефтяных месторождений с поддержанием пластового давления закачкой воды. Комплексный подход к разработке нефтяных месторождений, обоснованный группой ученых Российской академии нефти и газа им. Губкина под руководством академика А. П. Крылова (А. П. Крылов, М. М. Глоговский, М.Ф. Мирчинк, Н.М. Николаевский, И. А. Чарный), нащел широкое распространение в нашей и других странах [53]. Достаточно указать, что более 90% ежегодной добычи нефти в нашей стране обеспечивается месторождениями, на которых осуществляется закачка воды. Объемы закачки воды примерно в 3 раза превышают объемы добычи нефти. Средний коэффициент нефтеотдачи превышает 0,4. При этом по существу в полной мере используются все возможности гидродинамики для обеспечения эффективности процесса законтурное, внутриконтурное, приконтурное, барьерное, очаговое И другие заводнения, изменение направлений фильтрационных потоков, волновое и циклическое воздействие на призабойную зону и т. д. Однако в связи с постепенным изменением структуры извлекаемых запасов нефти, связанным с ухудшением горно-геологических условий их залегания, открытием месторождений, приуроченных к глубокозалегающим низкопроницаемым коллекторам (пористым или трещиновато-пористым), обладающим значительной неоднородностью, насыщенных к тому же высоковязкими (малотекучими) нефтями возможности чисто гидродинамических методов воздействия оказались недостаточными для обеспечения высокой нефтеотдачи пластов. [c.300]

    На установках для гидроочистки дистиллятов в цилиндрических вертикальных реакторах с неподвижными слоями катализатора широко применяют алюмокобальтмолибденовые либо алюмони-кельмолибденовые катализаторы. При сопоставлении катализаторов установлено, что А1—Со—Мо катализаторы более эффективны в отношении удаления серы, а А1—N1—Мо катализаторы —в отношении удаления азота и насыщения ароматических соединений и олефинов [17, 18]. Известны гидрообессеривающие катализаторы с повышенной активностью в отношении уда.пения азота из керосиновых дистиллятов, атмосферных и вакуумных газойлей, а также мазутов. Так, фирма Ргоса1аИзе (Франция) выпускает три сорта катализатора такого типа на носителе А12О3 [19]  [c.54]

    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Очистка от сернистых соединений химическими методами. Для эффективного и в то же время экономичного процесса удаления сероводорода из газов пригоден целый ряд реагентов. Все эти реагенты поглощают сероводород при низких температурах и затем вновь выделяют его либо при продувке воздухом (так называемый карбонатный процесс [165, 167]), либо нри нагреве (феноляты [168, 169] этанолампны и этаноламин-этиленгликоле-вые смеси [170—174] щелочные соли аминохшслот [175] трп-фосфат натрия [176—178]), либо при окислении насыщенного по- [c.248]

    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    С увеличением давления быстро растет глубина извлечения углеводородов. В последнее время за рубежом строят заводы, на которых абсорбция осуществляется под давлением 100 ат и выше. Однако с увеличением глубины отбора отдельных компонентов в насыщенном абсорбенте увеличивается содержание низших углеводородов (метана, этана), что создает большие трудности при регенерации абсорбента. Для выделения неконденсн-рующихся углеводородов насыщенный абсорбент по выходе из абсорбера подвергается стабилизации, которая проводится в колонне, как правило, разделенной на две секции. В нижней секции из насыщенного абсорбента удаляются метан, этан и часть пропана. Эти газы направляются в верхнюю секцию колонны, где орошаются регенерированным холодным абсорбентом для выделения из газов пропана. Выделение метана, этана и части пропана пз абсорбента осуществляется или путем его нагрева при помощи горячего регенерированного абсорбента или снижением давления по сравнению с давлением в абсорбере. Указанный аппарат позволяет эффективно отделять метан и этан при общем выделении пропана из газа более 60% и бутана более 95%. Выделение значительной части метана и этана снижает нагрузку на компрессор, конденсатор и этановую колонну. [c.21]

    Адсорбционный метод заключается в избирательном поглощении тяжелых углеводородов твердыми высокопористыми веществами, например активированным углем. Эффективность поглощения в значительной степени определяется величиной поверхности адсорбента. На современных газобензиновых заводах применяются активированные угли, поверхность которых достигает 1200—1600 лtVг. Десорбция углеводородов из насыщенного адсорбента осуществляется при помощи перегретого пара при температуре 125—140°. Десорбированные углеводороды, а также пары воды направляются сначала на конденсацию, а затем на стабилизацию и газофракцинировку. Регенерированный адсорбент подвергается сначала сушке воздухом или отбензинен-ным газом, а затем охлаждению. [c.31]

    Следует отметить, что в литературе имеются различные данные по эффективности бутана в повышении давления насыщенных паров бензинов. Так, по данным М. Б. Вольфа с сотр., каждый процент добавленного бутана повышает давление насыщенных паров на 25— 30 мм рт. ст., в исследованиях Унзельмана и Форстера [151 добавление 1 % бутана вызывало увеличение давления насыщенных паров на 35—45 мм рт. ст. Очевидно, различие в данных, опубликованных в литературе, является следствием применения бензинов с разной исходной величиной давления насыщенных паров. Рис. 70 свидетельствует о том, что с повышением давления насыщенных паров бензина каждая новая единица прироста давления требует добавления все большего количества низкокипящих компонентов. Это об- [c.185]

    Влагоемкость. Силикагель очень гигроскопичен, особенно. по отношению к водяным парам, и поэтому является одним из наиболее эффективных твердых осушителей. Широкопористые силикагели обладают большой поглотительной способностью, но для полного пх насыщения требуется гораздо больше времени, чем для тонкопористых, так как динамическая активность широкопористых силикагелей незначительна. Поэтому по сравнению с широкопористымп [c.24]

    При ректификации же важен эффект байпассирования, так как эффективность процесса измеряется степенью изменения состава жидкости при ее прохождении от верха до низа колонны. При наличии байпассирования жидкость, орошающая верхнюю часть колонны, достигает низа аппарата с неодинаковыми степенями извлечения из нее легколетучего компонента. Аналогично можно ожидать, что и при насыщении жидкости газом процесс окажется подверженным неблагоприятному влиянию байпассирования, поскольку некоторая часть жидкости может достигать низа колонны ненасыщенной. [c.221]


Смотреть страницы где упоминается термин Насыщенность эффективная: [c.247]    [c.77]    [c.285]    [c.239]    [c.100]    [c.224]    [c.365]    [c.102]    [c.184]    [c.204]    [c.43]    [c.353]   
Процессы химической технологии (1958) -- [ c.107 , c.109 , c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте