Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Топки горения

    Теоретическую температуру горения топлива определяют, исходя из предположения, что вся теплота, внесенная в топку (горение топлива + теплота подогретого воздуха), расходуется на нагрев продуктов горения. Если воздух не подогревают и количество его равно теоретически необходимому, то теоретическая температура горения [c.10]

    Горелка устанавливается таким образом, чтобы ее выходное сечение (кратер) находилось в одной плоскости с внутренней поверхностью топки. Горение газовоздушной смеси начинается вблизи от кратера и заканчивается на длине 1,0—1,5 м (при коэффициенте избытка воздуха а= 1,05-ь 1,10). Проскок пламени в смеситель предотвращается при помощи пакета металлических пластин 9 толщиной 0,5 мм. Пластины [c.109]


    При факельном горении пылевидное топливо непрерывно подают в топку с помощью воздуха или газовоздушной смеси. Одновременно в эту же зону подают дополнительный (вторичный) воздух в количестве, достаточном для полного выгорания топлива. При установившемся в топке горении в поток вновь поступающей пылевоздушной смеси увлекаются высокотемпературные продукты горения, которые подогревают и воспламеняют смесь. Таким образом, создается непрерывное постоянное зажигание свежей пыли, причем устойчивость процесса увеличивается с ростом температуры газов в топке. [c.104]

    При наличии в топке хотя бы небольшого противодавления и заполнении ее продуктами сгорания газа устройство запальника должно обеспечивать выдачу полностью подготовленной газовоздушной смеси при таком избытке воздуха, чтобы при введении его в топку горение газа могло происходить только за счет первичного воздуха. Поэтому конструкция запальника среднего давления (рис. 1-24, в) рассчитана на инжекцию первичного воздуха в атмосферных условиях с а = 1,3 1,4. Чтобы обеспечить устойчивость факела, огневой насадок запальника снабжен кольцевым стабилизатором. [c.207]

    Сжигание газа светящимся пламенем заключается в том, что газ и воздух подают в зону горения раздельно. Газ встречается с воздухом и перемешивается с ним в топке. Горение газа происходит одновременно с перемешиванием в относительно медленном темпе образуется светящееся пламя длиной 3—4 м и более. Перемешивание происходит за счет диффузии — способности частиц газа проникать в слой воздуха, окружающий факел, а частиц воздуха — в слой газа. Этот способ сжигания газа называют также диффузионным, или внешнего смешения. [c.39]

    Общие данные. Относительно химических соотношений в процессе горения см. Т. I, Теплота . Процесс горения есть окисление горючих частей топлива (С и Н и незначительно 5) в конечные продукты горения СОз, Н2О и О2. Происходящее в котельных топках горение топлива является сложным процессом, с одной стороны, газификации топлива, т. е. выделения его летучих частей, смешения продуктов газификации с воздухом и сгорания этой смеси в виде пламени, а с другой стороны — сгорания путем поверхностного окисления твердого остатка (кокса) топлива, остающегося на решетке после выделения летучих. Практически процесс горения нельзя вести с теоретически необходимым количеством воздуха, всегда должен быть обеспечен больший или меньший избыток воздуха. Избыток воздуха не должен спускаться ниже определенного минимума (различного для разных топок и топлив), иначе получается значительная неполнота горения (образование СО). В случае излишне большого избытка воздуха происходит понижение температуры, ухудшение условий, благоприятствующих химическим реакциям, и в результате также может происходить неполное [c.79]


    Уравнение (94) показывает, что максимальная температура горения повышается с увеличением теплоты сгорания топлива, с повышением температуры воздуха, поступаюш,его в топку, и с уменьшением коэффициента избытка воздуха и потерь в окружающую среду. Увеличение коэффициента избытка воздуха и рециркуляция газов снижают максимальную температуру горения. [c.114]

    В случае работы на пониженной производительности необходимо строго контролировать температуру газо-сырьевой смеси на выходе из каждого потока змеевика печи для достижения ее равномерного распределения, проверять равномерность горения смеси в топке по всем форсункам и, по возможности, увеличить кратность циркуляции водородсодержащего газа. [c.125]

    С возможностью естественной конвекции нужно считаться при процессах горения в шахтных топках и газогенераторах, при каталитических процессах в начальных участках реакторов с большим градиентом температуры и концентрации, в доменных печах, в тепловой изоляции в виде зернистой засыпки. [c.107]

    Горение в топке регулируется количеством топлива, подводимого к горелке. Регулирование осуществляется по температуре масла, выходящего из трубчатой печи. Значения температуры определяются и в некоторых случаях регистрируются при помощи дистанционного термометра. [c.322]

    Приборы для контроля и управления процессом горения. В эту важную группу приборов входят устройство дистанционного -зажигания факела УЭФ-2 для дистанционного розжига четырех дежурных горелок факельной трубы высотой 60 м, а также система аналогичного назначения типа СЭФ для факела высотой до 120 м электрозапал-сигнализатор ЭЗС-Д для розжига газовых горелок печей, технологических печей и сигнализации погасания пламени блок управления горением в топках котельных установок БУГ-500 и блок контроля пламени для этих же котлов сигнализатор погасания пламени СПП-1 для печей технологических установок и топок под давлением. [c.172]

    При горении угля в топках или газификации, при условии, что в генератор подается только воздух, могут протекать следующие реакции  [c.232]

    Трубчатые печи различают по ряду технологических и конструктивных признаков. Печи могут быть спроектированы для работы либо только на газовом топливе, либо на комбинированном — жидком и газовом. По способу сжигания топлива, особенностям передачи тепла в камере радиации и форме факела различают печи со свободным факелом беспламенного горения с излучающими стенами топки беспламенного горения с резервным жидким топливом с настильным и объемно-настильным факелом с настильным факелом и дифференциальным подводом воздуха. [c.242]

    Повышение температуры воздуха, подаваемого в топку, способствует увеличению скорости горения и телшературы факела прп уменьшении длины последнего н вместе с тем обеспечивает экономию топлива. Коэффициент избытка воздуха а для трубчатых печей обычно колеблется в пределах а = 1,05 -г 1,4. [c.88]

    Заполнив бункер высушенным катализатором, открывают задвижку под бункером и ссыпают катализатор в прокалочную колонну. Объем бункера соответствует полезному объему прокалочной колонны, т. е. одной загрузке. Заполнив колонну катализатором, разжигают топку под давлением (на жидком топливе), направляя дымовые газы в атмосферу. Затем, отрегулировав горение в топке, дымовые газы вводят в кожух прокалочной колонны. Прогрев кожух и удостоверившись в нормальном горении топлива, направляют дымовые газы в низ прокалочной колонны в минимальном количестве, необходимом лишь для преодоления сопротивления слоя катализатора. Затем начинают медленный подъем температуры дымовых газов на выходе из топки и разогрев катализатора. Разогрев системы продолжают примерно 10—12 ч за это время вводят такое количество дымовых газов, чтобы не было уноса катализатора сверху. Достижение температуры в низу колонны 600—650° С считается началом прокаливания катализатора. Продолжительность прокаливания при этой температуре 10 ч. [c.68]

    Камера горения представляет собой стальной стакан, футерованный огнеупорным кирпичом. Между камерой горения и корпусом топки имеется кольцевой зазор, по которому нагреваемый воздух, равномерно распределяемый при помощи специальных устройств, движется в камеру смешения. Охлаждая поверхность камеры горения, добиваются сохранения прочности и продления срока службы стакана и футеровки. Камера смешения представляет ту зону камеры горения, где горение уже завершено. В некоторых топках в камеру смешения предусмотрена подача вторичного воздуха. В этом случае в кожухе и футеровке камеры горения оставляют прорези для лучшего смешения входящего воздуха с продуктами горения. При атом температура в камере горения несколько снижается, что удлиняет срок службы футеровки. [c.141]


    Комбинированные горелки типа ГВ (табл. П-5) отличаются от горелок типа ГП наличием диффузора (рис. П-7). Жидкостная часть работает следующим образом. Парожидкостная смесь поступает в горелку и через диффузор выходит наружу, где подхватывается воздухом от вентилятора, закрученным в лопатках завихрителя, затем направляется в амбразуру и воспламеняется. Наряду с первичным воздухом для тонкого регулирования процесса горения при помощи регистра в топку инжектируется вторичный атмосферный воздух через окна в корпусе горелки. [c.52]

    Конструкция АГГ разработана на принципиально новой теоретической основе с применением акустического резонатора, создающего мощный вихревой эффект смешения топливного газа с атмосферным воздухом. Сочетание враш,ательного и поступательного движения газовоздушной смеси приводит к появлению зоны осевых обратных токов, росту центробежных сил, интенсивному перемешиванию компонентов и пропорциональному распределению газа в объеме окислителя. На выходе из горелки вихревым движением смеси создаются большой угол раскрытия зоны горения и настил пламени на излучающую стенку огнеупорной кладки топки с малой осевой дальнобойностью, а наличие зоны разрежения по оси закрученного потока способствует возникновению встречного высокотемпературного потока дымовых газов из топки, который стабилизирует фронт настенного горения (иначе называемого настильное сжигание топлива ).  [c.65]

    Об экономичности сжигания топлива судят по коэффициент, избытка воздуха. Для его нахождения отбирают пробы тс ночных газов. Места отбора проб рассредотачивают по всем газовому тракту (около горелок, в нескольких местах топки, г. конвекционной шахте, в борове). Анализ проб производят аппаратами Орса. Для более совершенного контроля горения топлива используют электрические газоанализаторы, автоматически определяющие состав топочных газов и дающие показания процентного содержания (по объему) в них СО2 и отдельно СО + Из. Чем больше концентрация СО2 и меньше содержание СО + Нг в газах, тем с меньшим избытком воздуха сжигается топливо и тем лучше и полнее оно сгорает. Наличие некоторого количества несгоревших СО - - На объясняется недостатком воздуха в топливе. Итак, наиболее рациональн(. топливо будет сжигаться при максимальном содержании СО2 и полном отсутствии O-f Но в дымовых газах. [c.105]

    На рис. 50 показана камерная нагревательная печь, отапливаемая газом или мазутом и не имеюшая отдельной топки — горение топлива происходит непосредственно в рабочем пространстве печи. [c.130]

    Гипронефтемашем разработаны печи с излучающими стенами из беспламенных панельных горелок (рис. 63а и рис. 636). Стены топки целиком составлены из беспламенпых панельных горелок, вследствие чего горение топлива удается вести почти с теоретическим количеством воздуха и значительно интенсифицируется теплопередача. Кроме того, такие печи компактны, так как экран можно располагать на расстоянии 0,6—1 м от излучающих стен. Ряд таких печей эксплуатируется на наших заводах. [c.98]

    Тепловая напряженность топочного пространства, или количество тепла, выделяемого при горении топлива на 1 топочного объема в час (б/тг/л. или ккал мН). В современных трубчатых печах тепловая напряженность топочного пространства составляет от 35 ООО до 70 ООО ккал/м ч (40—80 квт/м ). Между тем в современ ных котельных топках тепловая напряженность топочного пространства равна от 500 ООО до 2 000 ООО ккал/м ч (580—2300 квт/м ). Это объясняется тем, что в котельной практике объем топочного пространства лимитируется лишь возможностью завершения горения, что требует небольших объемов. В трубчатых же печах объем топочного пространства предопределяется конструктивными соображениями и допускаемыми тепловыми нагрузками поверхности нагрева. [c.104]

    Фактически температура в топке всегда ниже ма] симальной температуры горения вследствие передачи частп тепла радиантным [c.113]

    Коэффициент полезного действия топки т . , характеризует долю тепла, которое можно полезно использовать в топке. Потери тепла в топке складываются из потерь излучением т ладки от химической пеполпоты горения дз и от механической неполноты горения [c.115]

    Теплоотдача н камере радиации в большой степепи зависит от температуры поглощающей среды. Наиболее высоких телшератур поглощающая среда может достигать в неэкранировапной топке, т. е. в том случае, когда все тепло, выделенное топливом, идет только на нагрев продуктов горепия (максимальная температура горения). В экранированных топках температура поглощающей среды всегда ниже этой предельной температуры н достигает некоторого равновесного значения, находящегося в интервале между максимальной температурой горения и температурой газов на выходе из топки. Эта равновесная температура, названная средней эффективной температурой среды, тем ниже, чем больше степень экранирования топки и чем ниже коэффициент избытка воздуха. [c.117]

    Составим уравнение теплового баланса топки. Часть тепла, внесенного в топку топливом (считая от температуры исходной системы), передается радиантным трубам радиацией и свободной конвекцией ( p), а остальная часть уносится продуктами горения за пределы топочной камеры [5G p (Гр — Го) 1  [c.118]

    Уравнение теплопередачи должно учитывать теплоотдачу экрану радиацией и конвекцией. Передача тепла радиацией определяется уравнением Стефана-Больцмана, для решения которого необходимо знать температуры излучающего и поглощающего источников. Температура последнего, т. е. радиантных труб, обычно известна, но неизвестна средняя эффективная температура продуктов горения (но1 ло1цающен среды). Выше было отмечено, что изменение температур в TOHi e подчиняется сложному закону. Предполагается, что в больших топочных нространстпах процесс теплоотдачи определяется периферийными температурами, в данном случае температурой газов 1Ш перевале. Ото не означает, одпако, что температура ) газов на перевале раина средней эффективной температуре поглощающей среды последняя всегда вьппе. В связи с этим Н. И. Белоконь вводит понятие эквивалентной абсолютно черной поверхности, излучение которой при температуре газов на выходе из топки (на перевале) равно всему прямому и отраженному излучению. Другими словами, общее количество тепла, передаваемого эквивалентной [c.118]

    Процесс термического окисления H S осуществляют в основ — Hof топке, смонтированной в одном агрегате с котлом — утилизато — ром. Объем воздуха, поступающего в зону горения, должен быть строго дозирован, чтобы обеспечить для второй стадии требуемое соотношение SO и H S (по стехиометрии реакции 2 оно должно быть 1 2). Температура продуктов сгорания при этом достигает 1100 — 1300 °С в зависимости от концентрации H S и углеводородов в газе. [c.165]

    Крекинг-продукты обладают некоторыми преимуществами и недостатками, не связанными с их нестабильностью. Малая вязкость уменьшает величину предварительного нагрева, требующегося для облегчения транспортировки продуктов, до 50— 65° С вместо 150° С для некрекировапных нефтепродуктов той же плотности. В то же время большая плотность позволяет получить большую теплотворную способность на единицу объема. К недостаткам следует отнести более медленное горение ароматических углеводородов, что, кроме более высокой температуры в топке, требует обеспечения длинного пламени и предотвращения внезапного охлаждения пламени до завершения горения [109, 110]. [c.483]

    Механические проблемы, возникающие при горении различных нефтетоплив, в основном одни и те же. Необходимо обеспечить равномерную и контролируемую подачу топлива и достаточную поверхность контакта между топливом и воздухом для ускорения реакции окисления. Конструкция и форма топочного пространства должны обеспечить выгодную полезную теплоотдачу. Это достигается предварительным испарением топлива или впрыскиванием его в топку в виде мелких капелек. В большинстве промышленных устройств топливо разбрызгивается в объеме конуса с вершиной в отверстие распределительного устро11ства. Это обеспечивает достаточное смешение с воздухом пламя получается требуемо формы, обычно конической. [c.484]

    Основными точками контроля режима печи являют-)ся температуры на вводе и выводе сырья, в переходных участках трубчатого нагревателя, на ловерхностй стенок труб трубчатого нагревателя, в пароперегревателе, в секции теплоносителя и на других участках, над пе р.евалом, под радиантными трубами, на входе в конвекционную шахту, в конце ее, до и после рекуператора, в дымовой трубе и на линии горячего воздуха . разрежение в топке и по ходу продуктов горения давление газового или жидкого топлива в трубчатом нагревателе расход сырья и топлива. [c.48]

    Свойство топлива, определяющее непосредственно процесс горения, для котельных установок имеет не менее важное эксплуатационное значение, чем для других двигательных установок. Количество тепла, вьщеляю-щегося при сгорании единицы топлива, определяет паропроизводитель-ность котельной установки, а следовательно, удельный расход топлива и автономность плавания судна. Полнота сгорания топлива, радиация пламени, образование отложений нагара в топке, дымность отработанных газов во многом определяют ресурс работы котельной установки, объем и сроки регламентных работ, а также загрязнение окружающего пространства. [c.184]

    В качестве топлива обычно используется топочный мазут (котельное топливо) или газ, подаваемые в топку печи посредством форсунок, установленных в камере радиации. С целью уменьшения коэффициента избытка воздуха форсунки в ряде печей ус1анавливают в карборундовых муфелях, которые катализируют процесс горения и уменьшают длину факела. Для интенсивного и полного сг(У )ания жидкое топливо, вводимое в печь, должно быть подвергнуто однородному и тонкому распыливанию. Недостаточно тонкое распыливание топлива ухудшает условия его горения, удлиняет факел и приводит к химической неполноте сгорания топлива. [c.87]

    Большой избыток воздуха в топке облегчает горение топлива, однако прп чрезмерной подаче воздуха охлаждается и удлиняется факел и более интенснвно окисляется металл труб, увеличиваются потери тепла с отходящплш дымовыми газами. [c.88]

    Топка под давлением. Для нагревания воздуха используют устройства, в которых нагрев происходит при непосредственном смешении с продуктами сгорания топлива. Для этой цели используют аппараты, в которых топливо сжигают в потоке воздуха при давлении выше атмосферного. В нефтеперерабатывающей промыпшен-ности такие аппараты получили название топок под давлением Горизонтальная топка под давлением состоит из наружного стального корпуса, в котором расположены устройства для приготовления и полного сжигания горючей смеси (камера горения) и смешения продуктов горения с нагреваемым воздухом до создания однородной среды с заданной температурой (камера смешения). [c.141]

    При сжигании обводненных мазутов возрастают аэродинамическое сопротивление и расход энергии на собственные нужды электростанции, уменьшаются теоретическая температура горения и теплоотдача в топке. Следствием всего этого ягляется снижение к.п.д. парогенератора. Каждый процент влаги сн1 жает теплоту сгорания мазута примерно на 418 кДж, из которш 3 13 кДж обусловлено снижением доли горючей части в топливе и 25 кДж - пасходом тошшва на нагрев и испарение воды. [c.109]

    На установках АВТ сооружены высокопроизводительные печи конструкции ВНИПИнефть вертикальнофакельного типа теп-лопроизводительностью 21—42 МВт. Сырьевые змеевики в ра-диантной камере расположены горизонтально. Топливная система укомплектована комбинированными горизонтальными горелками для сжигания мазута и топливного газа. Горелки размещены в поду топки в шахматном порядке. При горении топлива образуется стена вертикальных факелов, излучающих тепло сырьевым змеевикам, расположенным на кронштейнах у стен топки из огнеупорной кладки (рис. 1-1). Дымовые газы отводятся вверх в камеру конвекции. [c.7]

    Паромазутный узел включает ствол, наружную трубу, рас-пыливающую головку с щелевым насадком, топливную трубу, кронштейн и шарнир. Газовый узел состоит из газоподводящей трубы, газового коллектора, десяти газовых и двух запальных сопел. Воздушный узел представляет собой корпус со стаканом и гильзой, кроме того, к нему относится шибер. Ствол горелки — подвижный, он может вращаться вокруг своей оси и оси шарнира, а также перемещаться вдоль оси вместе с наружной трубой. Это позволяет изменять расположение факела в топке и укрывать щелевой насадок в корпусе горелки во избежание его обгорания при работе на газе. Чтобы горелка была подвижной, обвязка ее трубопроводами имеет три шарнирных соединения с накидными гайками. Горелка разжигается через запальный люк в шнбере. Люк закрывается заслонкой с окном для наблюдения за факелом. Атмосферный воздух, инжектируемый паромазутной или газовой струей, подается на горение через окна корпуса горелки. Количество его регулируется пере мещепием шибера. [c.57]

    Раскаленные керамические туннели обращены торцами в топку печи п равномерно излучают тепловую энергию на поверхность трубчатого змеевика. В зависимости от производительности горелки на 1 м- излучающей поверхности приходится от 400 до 1250 туннелей. При нормальной работе горелок горение газовоздушной смеси заканчивается в пределах туннеля. При этом обеспечиваются высокий температурный уровень передачи тепла пз зоны горемия стенкам туннеля и аккумуляция тепла огнеупорной керамикой горелки. [c.61]

    Конструктивными недостатками горелки можно считать наличие отверстий для прохода горючей смеси вместо регулирующего колпачка (либо диска), которым оснащены почти все инжекционные газовые горелки. Поэтому невозможно регулировать распределение смеси по чашеобразной ианели и, кроме того, появляются дополнительные гидравлические сопротивления при проходе газовоздушной смеси в топку. По этим причинам управление горением топлива затруднительно. Горелка работает с большим избытком воздуха, что приводит к перерасходу топлива. Опыт эксплуатации горелки показал, что локальная концентрация лучистой энергии, создаваемая чашеобразной [c.70]

    По принципу смесеобразования горелка является инжекцион-ной, с неполным предварительным смешением и подводом вторичного воздуха к корню факела. Коэффициент избытка атмосферного воздуха иервичной горючей смеси 0,7—0,75 обеспечивает устойчивый режим горения без проскока пламени в инжектор, Вторичный воздух (0,3—0,35 от теоретически необходимого) подсасывается по тракту вторичного воздуха в результате разрежения в топке печи и инжекционного эффекта настилающегося на огнеупорную стену факела. [c.72]

    В работу должны быть включены все горелки с примерно одинаковой нагрузкой по зонам топки. Разогрев излучающей стенки радиантной камеры должен создавать равномерный температурный проф,иль (перепад температуры излучающей стенки 30—60 С). Неисправные горелки необходимо немедленно ремонтировать, чтобы не нарушать теплового режима работы печи. В конце рабочего пробега печи, из-за отло кений кокса внутри пирозмеевиков могут появиться места локального перегрева труб. В этих случаях необходимо уменьшить интенсивность горения топлива соответствующих горелок. При коксо-отложении температура стенки последних труб секций иирозме-евиков повышается и достигает предельного значения. В случае необходимости продолжения пробега печи уменьшают расход топливного газа на горелки и снижают ироизводительность по сырью. [c.102]

    Помимо наблюдения за процессом горения необходимо систематически осматривать трубчатый змеевик. При осмотре проверяют наличие или отсутствие деформаций и ировисания печных труб, характерных пятен, указывающих на появление отдулин вследствие больших отложений внутри труб обрывов трубных и кирпичных подвесок, деформаций и разрушений в огнеупорной кладке топки и перевальных стенках. [c.106]

    Успешному решению проблемы рационального размещения горелок типа АГГ-П на стенах радиационной камеры способствовали предварительные комплексные аэродинамические и теплотехнические обследования действующей промышленной печи, поскольку процессы, происходяшие в топке, не могут трактоваться как только аэродинамические. В большой мере оии представляют собой наложение аэродинамических процессов, процессов горения и теилопоглощения и, таким образом, очень сложны и недоступны простому расчету. [c.282]


Смотреть страницы где упоминается термин Топки горения: [c.123]    [c.85]    [c.401]    [c.221]    [c.19]    [c.103]    [c.260]   
Справочник механика химического завода (1950) -- [ c.657 ]




ПОИСК







© 2025 chem21.info Реклама на сайте