Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфология полимеров фибриллы

    Понятие морфологии применительно к полимерам означает, следовательно, значительно больше, чем это принято, например, у ботаников. Кроме различий в форме и структуре волокна и пленки морфология полимеров включает элементы тонкой (надмолекулярной) структуры, такие, как фибриллы и мицеллы, доступные и недоступные участки, аморфные и кристаллические фракции и другие надмолекулярные образования. Очевидно, что эти элементы могут существовать лишь в полимере, находящемся в конденсированной фазе, и, таким образом, исследования влияния морфологии на реакционную способность ограничиваются гетерогенными системами. Под гетерогенными системами понимают такие системы, в которых структура исходного полимера сохраняется, и, в частности, всегда сохраняются минимум две фазы — обстоятельство, усложняющее кинетические исследования. Важнейшие химические реакции полимера и мономера будут рассмотрены позже. [c.47]


    Наименее изучена в настоящее время проблема связи между идеальными монокристаллами, растущими из разбавленных растворов и достаточно полно охарактеризованными, и более сложными структурами, обнаруживаемыми в образцах, закристаллизованных из расплава. Однако именно последние представляют наибольший практический интерес и именно этим структурам в настоящее время посвящено большинство исследований по кристаллизации полимера. На рис. 17 приведена схема, цель которой объединить большую часть из описанных выше кристаллических структур. Эта схема будет служить рабочей моделью в последующем изложении. Последняя работа Палмера и сотр., в которой использованы методы химического воздействия на полимеры для выделения структурных элементов из блоков полимеров, в значительной степени подтверждает предложенную схему. Но ввиду недостаточности наших знаний о морфологии полимеров эту схему следует рассматривать только как приблизительную. Существенно, что основной упор делается на сферолит или на его предшественников как на доминирующие структурные образования. Хотя сферолит может состоять из таких структурных элементов, как фибриллы или кристаллит, в любых кинетических исследованиях кристаллизации полимеров именно зарождение и рост сферолитов являются стадией, определяющей скорость процесса. [c.52]

    В настоящее время общеизвестно, что одна из основных отличительных черт морфологии полимеров заключается в том, что процесс роста может приводить к различным морфологическим типам кристаллических образований. В одних условиях (кристаллизация из разбавленных растворов) образуются отдельные ламеллярные монокристаллы. Морфология кристаллических образований, возникающих при кристаллизации из расплава, более сложна и разнообразна появляются дефектные разветвленные фибриллы, аморфные области, структурные элементы сферолитов. Кроме того, процесс кристаллизации из расплава может проходить через несколько совершенно различных стадий. В связи с этим, для того чтобы описать механизм кристаллизации полимеров, нужно определить процесс, который играет доминирующую роль в данных условиях. [c.120]

    Итак, интерпретация морфологии сферолитов блочных полимеров в настоящее время возможна только в ограниченных пределах и касается главным образом сферолитов, состоящих из пластинчатых фибрилл. Эти последние встречаются наиболее часто у полимеров с высокой кристалличностью, имеющих, к сожалению, много деталей, которые исследователи надеялись изучать с помощью электронной микроскопии, но безуспешно, так как пока еще нельзя ясно различать небольшие области аморфного или неупорядоченного полимера, ограничивающие и таким образом очерчивающие индивидуальные кристаллиты. Тем не менее достигнут значительный прогресс, а многие остававшиеся нерешенными проблемы теперь определены более ясно, чем когда-либо до сих пор. Мы уверены, что дальнейшая работа в этой интересной области исследований приведет к правильному пониманию основных физических и механических свойств полукристаллических полимеров. [c.469]


    Таким образом, возникающие при холодной вытяжке фибриллы полимера следует рассматривать как статистические агрегаты цепей ориентированных макромолекул, параметры которых зависят от интенсивности теплового движения, гибкости цепей полимера, модуля исходного неориентированного полимера и межмолекулярного взаимодействия. Фибриллярная морфология ориентированного полимера обусловлена подвижностью макромолекул в зоне с высокой долей свободного объема (концентраторе напряжения), а также высоким модулем и низкой скоростью релаксационных процессов в стеклообразном или кристаллическом полимере. В этой связи становится понятной обнаруженная в последние годы зависимость параметров фибриллярной структуры от условий деформации полимера (температуры, скорости растяжения и др.) [71, 72]. [c.19]

    Структурная особенность ПЭВП состоит в линейности его молекулярной организации. Поэтому содержание кристаллической фазы в ПЭВП достигает 80 %, она имеет развитую морфологию (пачки, фибриллы, ламели, сферолиты). ПЭВП относится к кристаллизующимся полимерам. Благодаря большей, чем в аморфной [c.32]

    Клемент и Джейл [38] на основании измерения размеров зерен принимают, что первичные домены могут собраться в рой с образованием структурных единиц большого размера (250—500 А). В модели Аржакова, Бакеева и Кабанова [39] также предполагается существование упорядоченных доменов со складчатыми цепями, но в отличие от Ии и Клемента и Джейла, которые предпол1агают изотропное расположение доменов, соединенных проходными цепями в однородную трехмерную сетку, Аржаков, Бакеев и Кабанов принимают, что модель должна иметь анизотропное строение. Если первые рассматривают в качестве исходной единицы зерно, то последние принимают, что аморфный полимер построен из фибрилл, со складчатыми доменами, которые соединены проходными цепями. Имеющиеся в литературе данные противоречат представлению о фибрилле, как основной морфологи- [c.82]

    Различия в поверхностной энергии наполнителей также влияют на морфологию, как было показано на примере фенолоформальде-гидных смол [97]. Применение кристаллических наполнителей (алмаз, нитрид бора и др.) позволило выявить"различия в структуре слоев полимера на гранях кристаллов, обладающих различной поверхностной энергией. Различие адсорбционных потенциалов граней кристаллов приводит к тому, что глобулярная структура, характерная для исходного полимера, может переходить в фибриллярную, диаметр фибрилл которой составляет от 50 до 600 А, с поперечным разделением агрегатов. Структура смолы, наполненной частицами алмаза, характеризуется большей равномерностью размеров глобул (50—100 А) по сравнению со смолой, наполненной графитом, в которой размеры глобул колеблются от 50 до 300 А. Таким образом, структура, формирующаяся в присутствии частиц с высокой поверхностной энергией, более однородна. В работе [101] установлена также корреляция между морфологией наполненного полимера и его механическими свойствами. Менее раз-, витый структурный рельеф (небольшие размеры надмолекулярных образований, размывание границ между крупными агрегатами, а также между наполнителем и связующим) обусловливает более высокие показатели механических свойств, а эти эффекты, в свою очередь, зависят от поверхностной энергии наполнителя. [c.51]

    Морфология редкосшитых полимеров мало отличается от таковой для линейных полимеров [152—162]. В редкосшитых сетчатых полимерах могут быть реализованы все морфологические структуры (глобулы, сферолиты, кристаллиты, фибриллы и т. п.), характерные для линейных полимеров. Однако по мере увеличения концентрации узлов сетки наблюдаются прогрессирующие затруднения для образования хорошо упакованных морфологических структур с высокой степенью упорядоченности межузловых цепей, так что в конечном счете для густосетчатых полимеров (концентрация узлов, сетки 102 узлов см ) подобные структуры вырождаются вовсе и фундаментальным структурным элементом для густосетчатых полимеров являются исключительно глобулы [152, 153, 162—165]. Все попытки изменения характера морфологической структуры таких полимеров за счет широкого варьирования химического строения исходных реагентов — олигомеров и отверждающих агентов, за счет изменения условий образования полимера или воздействия на уже сформированный полимер тепловых и механических полей не приводят к изменению морфологии густосетчатого полимера во-всех случаях она остается глобулярной, варьируют в некоторой степени лишь размеры глобул. [c.150]

    В лаборатории автора была сделана попытка воспроизвести экспериментальные условия, позволяющие получать проходные фибриллы по Кейту. Было установлено, что природа подложки, на которой по методу Кейта получали ультратонкие образцы полимера, оказывает большое влияние на их морфологию. Этот результат дает основание предположить, что данные условия могут значительно отличаться от условий струк-турообразования в объеме. Более того, поскольку образования типа проходных фибрилл, как можно видеть из рис. 1П.56, представляют собой агрегаты ламелярных кристаллов, модель проходных фибрилл в виде пакетных кристаллов встречает серьезные возражения [8]. Если допустить возможность существования проходных фибрилл в объеме закристаллизованного полимера, то отсюда немедленно следует, что пакетные кристаллы, соединяющие отдельные ламели, должны играть основную роль в динамических, механических и других свойствах полимера. Однако это требует детального изучения. [c.222]


    В случае полимеров предложенная выше точка зрения приводит к тому, что рост сферолитов связан прежде всего с конкурирующими процессами. Стереорегулярность молекул среды или высокий молекулярный вес в большинстве случаев ведут к легквй кристаллизации, тогда как молекулы с недостаточной стереорегулярностью, с очень низким молекулярным весом или сильно изогнутые в основном будут отталкиваться в сторону, как примеси. Вопрос о том, могут или не могут эти примеси вообще кристаллизоваться, является второстепенным они выполняют важную функцию установления режима сферолитной кристаллизации уже только потому, что несколько отличаются по поведению от своих соседей, способных кристаллизоваться более легко. Такие более тонкие детали, как относительная доля молекул, не участвующих в кристаллизации, степень кристалличности, достигаемая расплавом между волокнами при продолжительной кристаллизации, и огрубление текстуры, зависят от состава индивидуального полимера и от температуры кристаллизации. Вариации, которые могут получаться при изменении этих параметров, очевидны из предыдущего рассмотрения. О поведении молекул известно очень мало, но что касается описания кристалличности и морфологии на уровне кристаллических фибрилл и аморфных областей, то здесь возможны качественные оценки поведения, наблюдаемого на опыте у широкого ряда полимеров. [c.466]

    Исследование морфологии макромолекулярных кристаллов позволяет сформулировать общий принцип, согласно которому регулярные гибкие, в достаточной мере подвижные макромолекулы кристаллизуются обычно с образованием макроконформаций сложенных цепей (разд. 3.2.2.1). Как правило, наблюдаемая длина складок колеблется от 50 до нескольких сот ангстрем (см. табл. 3.3 и рис. 3.42 - 3.51). Несмотря на то что поперечные размеры таких кристаллов могут быть велики, они являются метастабильными кристаллами. Частое складывание приводит к появлению большой поверхности, в которой сосредоточены складки, вследствие чего возрастает свободная энтальпия и уменьшается температура плавления (см. рис. 4.13, а также разд. 3.2.2.5 и гл. 2). В тех случаях, когда подвижность недостаточна для складывания цепей, происходит образование кристаллов мицеллярного типа, размеры которых малы во всех направлениях (см. рис. 3. а также разд. 6.1.7). Размеры таких кристаллов даже меньше, а сами они более дефектны, чем ламелярные кристаллы со сложенными цепями (разд. 4.2.1). Наконец, кристаллизация в процессе полимери-защи часто приводит к образованию фибриллярных кристаллов (разд. 3.3.1 и 3.8.3). Эти фибриллы могут содержать больше выпряденных макромолекул, однако в тех случаях, когда эти фибриллы достаточно тонкие (и дефектные), они также метастабильны. Таким образом, все три основных типа макромолекулярных кристаллов - ламелярные, мицеллярные и фибриллярные - метастабильны и поэтому способны изменяться при отжиге. Изометрические кристаллы макроскопического размера - редкое явление (разд. 3.9, рис. 3.141-3.143). [c.446]

    Рассмотрим основные особенности фибриллярной структуры полимера, полученной в процессе холодной вытяжки. Структура такого рода представляет собой плотноупакованный агрегат фибриллярных элементов диаметром от нескольких единиц до десятков нанометров. Несмотря на их плотную упаковку, фибриллярные элементы имеют четко выраженные межфазные границы раздела, которые хорошо регистрируются электронно-микроскопически [46, 47] и с помощью рентгеноструктурного анализа [48]. Механические свойства ориентированного полимера во многом обусловлены существованием реальных физических границ раздела между фибриллами. По мнению Петер-лина, главное сопротивление деформации оказывают квазивяз-кие силы трения на высокоразвитых поверхностях сдвигающихся друг относительно друга фибрилл [49]. Не менее сильное влияние фибриллярная морфология оказывает и на прочностные свойства аморфных и кристаллических полимеров [50, 51]. В работе [46] обобщен обширный экспериментальный материал по изучению фибриллярной морфологии большого числа волокон на основе природных и синтетических полимеров, и показано, что практически любые ориентированные полимерные системы имеют фибриллярную структуру. Диаметр отдельных фибрилл в такой структуре изменяется от нескольких нанометров до десятков нанометров. [c.12]

    Из рисунка видно, что в то время как растял<ение на воздухе приводит к появлению и развитию в полимере отчетливо выраженной шейки, вытяжка в адсорбционно-активной л идкости происходит без заметного сужения рабочей части образца, который становится молочно-белым и непрозрачным из-за развития в нем большого количества микроскопических зон пористой структуры. Электронно-микроскопическое исследование (рис. 1.7) таких образцов свидетельствует о том, что при деформации полимера в присутствии поверхностно-активного вещества нам действительно в существенной степени удается подавить слипание (коагуляцию) фибриллярных агрегатов макромолекул в единую шейку. При этом отчетливо видно, что разобщение фибрилл в пространстве приводит к возникновению специфической пористой структуры, для которой характерно существование фрагментов исходного неориентированного материала, соединенных фибриллами ориентированного полимера. В том, что пористый материал, соединяющий фрагменты недеформированного полимера, ориентирован, легко убедиться, изучая процесс растяжения полимера в адсорбционно-активной среде с помощью поляризационного микроскопа. На рис. 1.8 показан ряд таких микрофотографий, отображающих различные стадии деформации полимера. Хорошо видно, что в процессе растяжения все больше количество полимера переходит в ориентированное состояние за счет расходования неориентированной части образца. О молекулярной ориентации деформированного полимера свидетельствует его сильное двулучепреломление. Рассмотрим подробнее морфологию возникающих микроразрывов. [c.21]

    Морфология эластомеров при промежуточных деформациях растяжения (е 100—300%) подробно исследована в пленках НК и полихлоропрена - 18з-185 з области деформаций в эластомере образуется структура типа шиш-кебаб (см. рис. 5, 5), состоящая из ориентированных вдоль направления растяжения (осевых) фибрилл и образующихся на этих фибриллах, как на зародышах, ламелярных структур (рис. 32). Как указывалось в гл. I, структура типа шиш-кебаб образуется при кристаллизации ориентированного расплава или при перемешивании раствора полимера при не слишком больших ориентациях. [c.112]

    Ламели отделены друг от друга аморфными областями, составленными из атактических блоков или других некристаллических веществ в полимере с кристалличностью 50%. Вследствие этого исходные пленки и волокна остаются плотными, но проявляют другие механические свойства (рис. 8.1) и большую эластичность (рис. 8.2), чем пленки и волокна, полученные из ненапряженного и неотожженного ПП. Морфология ориентированных ламелей исходных пленок или волокон схематически показана на рис. 8.3 [8—10]. Плотные исходные матрицы подвергаются вытяжке (50—300%) при температуре выше начальной температуры отжига, но ниже Тпл. о приводит к деформации аморфных областей между ламелями в фибриллы и формированию пористой сетки с продольными порами в направлении растяжения [c.290]

    Механическая деформация — растяжение кристаллического образца полимера — вызывает его плавление и изменение морфологии, соответствующее тому или иному уровню надмолекулярной организации2 4. зю, ззо-зз4 Одновременно с плавлением происходит ступенчатая кристаллизация при этом в ней ...принимают участие все более и более крупные единицы структуры (пачки, фибриллы, пластины, сферолиты). .. ззз. В этой связи до- [c.74]


Смотреть страницы где упоминается термин Морфология полимеров фибриллы: [c.27]    [c.68]    [c.55]    [c.455]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.83 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Морфология

Морфология полимеров



© 2025 chem21.info Реклама на сайте