Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры с неупорядоченными цепями

    На рис. 1.18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у, у и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука -процесс —потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе Я- процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса а, X и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров. [c.61]


    При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 нм, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм. [c.27]

    Эффективность акриловых реагентов связана с особенностями их состава и строения. В отличие от реагентов на основе полисахаридов с их нестойкими эфирными и гликозидными связями у акриловых полимеров цепи скрепляются прочными связями углерод — углерод. Это придает им большую энзиматическую, гидролитическую и термоокислительную устойчивость. Существенно и расположение функциональных групп непосредственно у главной цепи, а не в связи с циклическими группировками, как у крахмала или КМЦ. Малые размеры заместителей (группы N, СНз, СООН) и высокая их полярность обеспечивают гибкость полимерных цепей и их развернутые конформации, наиболее выгодные с точки зрения химической обработки и легко регулируемые изменениями pH. Содержание большого числа активных групп, различных по своей природе, и атомов водорода с повышенной способностью к образованию водородных связей обусловливают своеобразие коллоидно-химических свойств реагента и его многофункциональность. С этим связана и склонность полиакрилатов к взаимодействию с щелочноземельными и другими металлами. Большое значение имеет структура макромолекул — распределение в них отдельных звеньев. Для промышленного продукта характерно неупорядоченное строение и размещение функциональных групп. [c.192]


    Стереорегулярность позволяет цепям кристаллизоваться, поэтому стереорегулярные полимеры заметно отличаются по свойствам от полимеров неупорядоченной структуры. [c.248]

    С геометрической точки зрения критическое ядро, образованное последовательностями различных молекул, является наиболее вероятным зародышем структуры. При возникновении такого ядра должны удовлетворяться лишь минимальные требования, касающиеся кооперативности взаимодействий неупорядоченных цепей. Такая пачечная модель ядра наилучшим образом согласуется с кинетическим анализом и поэтому отражает наиболее вероятный механизм нуклеации. Кроме того, нет никаких оснований думать, что расположение цепей в кристаллите и ядре должно быть одинаковым. Но это отдельная проблема. Свою специфику имеет также и кристаллизация набухших полимеров. При этом проявляются дополнительные специфические факторы, влияющие как на конформацию и упаковку цепей, так и на нуклеацию. [c.292]

    В сополимерах мономерные звенья могут чередоваться хаотически по цепи полимера (неупорядоченные, или статистические сополимеры) или в определенном порядке (упорядоченные сополимеры). [c.99]

    Если Ь/а велико, Д( см [см. уравнение (2.26)] становится положительным. Это связано с затруднениями, обусловленными заполнением объема раствора полимерными цепями, построенными из достаточно больщих палочкообразных сегментов. Ранее было показано, что при увеличении концентрации таких жесткоцепных полимеров вероятность образования изотропного раствора уменьшается. Когда раствор изотропный, то/> (1 - е ), а когда он анизотропный, то / < (1 - е ). При Ь/а min значение jo стремится к/ р = 0,63. При /< 0,63 термодинамически более вероятным будет анизотропное состояние с параллельно расположенными цепями, т. е. с сохранением ориентационного порядка. Значение / у возрастает с температурой, и при определенной температуре происходит скачкообразный переход из упорядоченного состояния в неупорядоченное (изотропное). Это наблюдается при /q = 0,63. Переход из упорядоченного состояния в изотропное возможен при одновременной дезориентации структурных элементов и является фазовым переходом первого рода. [c.151]

    При кристаллизации полимера макромолекулярная цепь должна много раз сложиться, чтобы образовать отдельный кристаллит. Поэтому даже в монокристалле полимера неизбежно содержится какая-то доля аморфных , неупорядоченных структур. [c.261]

    Все эти факты можно объяснить соотношением скоростей двух процессов — кристаллизации (вследствие сообщения тепловой энергии молекулярным цепям) и термоокислительной деструкции, приводящей к возникновению микро-, а затем и макротрещин. Кристаллизация может начаться в любой точке объема образца, тогда как окисление начинается с поверхности, причем развивается более интенсивно в части полимера, неупорядоченной с точки зрения структуры. [c.42]

    В 1950-х годах появилось много теорий, объясняющих механизм механохимических явлений. Большинство из них относилось к неупорядоченным цепям в каучуках, расплавах и растворах. Эти теории и соответствующие эксперименты не всегда позволяли отличить эффекты, возникающие вследствие переплетения цепей, например в расплавах, от реакций отдельных макроцепей. В связи с этим представляет интерес рассмотреть влияние механических сил на поведение неупорядоченных цепей выше температуры стеклования. Отдельно обсуждены данные, касающиеся разбавленных растворов полимеров. В раздел 2.2 включены вопросы, связанные с перемешиванием с большой скоростью, и механохимические явления в твердой фазе. [c.28]

    Огромная молекулярная масса и соответствующие ей силы молекулярного взаимодействия придают полимерам высокую прочность, а эластомерам в то же вре.мя — способность к большим обратимым деформациям. Изменяя строение и длину цепи, чередование звеньев, составляющих молекулу полимера, состав исходных мономеров, условия проведения синтеза и последующую обработку, можно создавать высокомолекулярные соединения с самыми разнообразными свойствами. В полимерах наряду с кристаллическими областями имеются области с неупорядоченным [c.187]

    Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора большая часть их правильно ориентирована и образует упорядоченную структуру. Упорядоченная кристаллическая часть достигает большой концентрации (80—90%). Большой процент кристаллической части и неупорядоченная аморфная фаза обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой — хорошую гибкость и чрезвычайно низкую температуру хрупкости. Температура стеклования аморфной фазы —120° С. Ниже этой температуры аморфная фаза теряет каучукоподобные свойства, но полимер все же еше не становится хрупким. Температура разрушения (плавления) кристаллитов, т. е. превращения их в аморфную фазу, 327° С. Она значительно выше, чем у полиэтилена, вследствие того, что энергия взаимодействия между атомами фтора соседних цепей (2000 кал/моль) намного больше, чем энергия взаимодействия между атомами водорода. Полимер в аморфном состоянии, т. е. при температуре выше 327° С, не является вязко-текучим, а остается в высокоэластическом состоянии. Нагревание вплоть до температуры разложения (415° С) не превращает полимер в вязко-текучее состояние. Поэтому обычные методы переработки термопластичных масс (горячее прессование, литье под давлением, шприцевание) для политетрафторэтилена не применимы. [c.145]


    Структуру гибкоцепных полимеров в некотором приближении можно считать состоящей из двух частей, причем одна часть (неупорядоченная) состоит из свободных сегментов и цепей, не входя- [c.126]

    Возможны случаи кристаллизации и при неупорядоченном расположении боковых групп. Но это может быть только в том случае, когда размеры их невелики и они не препятствуют сближению участков макромолекулярных цепей. К числу таких полимеров относятся поливинилфторид и поливиниловый спирт, содержащие в качестве заместителей небольшие по объему атомы фтора и гидроксильные группы соответственно. [c.25]

    Кристаллическое состояние линейного полимера характеризуется дальним порядком в расположении цепей и звеньев. В аморфном состоянии ориентации звеньев беспорядочны, цепи изогнуты в расположении цепей имеется только ближний порядок. Промежуточным является состояние с упорядоченным расположением цепей, но беспорядочными ориентациями звеньев (рис. IV. 16), Кристаллические полимеры обладают регулярной плотнейшей упаковкой цепей, аморфные — случайной плотнейшей. При кристаллизации жидкого полимера цепи должны вытянуться и выстроиться параллельно друг другу. Однако увеличение вязкости с понижением температуры затрудняет этот процесс. Система может заморозиться в неупорядоченном состоянии, в особенности, если охлаждение происходит быстро, так что цепи не успевают перестраиваться. Так, натуральный каучук легко кристаллизуется при —25°С. но, будучи быстро охлажден до —50°С или ниже, сохраняется в аморфном состоянии. Кристаллизации способствует механическое растяжение полимера, которое приводит к вытягиванию цепей. [c.196]

    Согласно принятой модели изменение энтропии при образовании раствора обусловлено исключительно изменением числа способов распределения частиц по узлам. Для определения энтропии смешения из выражения (XIV. 117) следует вычесть аналогичные вклады в энтропию чистых веществ. Для чистого растворителя этот вклад нулевой (И 1) для полимера он может быть различным в зависимости от того, находится полимер в кристаллическом, полностью упорядоченном состоянии (цепи строго ориентированы в решетке) или в аморфном, неупорядоченном. Для кристаллического полимера [c.428]

    Как указывалось ранее, полимеры обычно обладают полидисперсностью, т. е. неоднородностью по величине и структуре макромолекул. И далее при высокой регулярности строения большей части цепей, отдельные цепп не имеют необходимой для кристаллизации структуры. Такие цепи нарушают кристаллическую структуру полимера. Поэтому очень трудно получить полностью кристаллический полимер обычно он содерл<ит большее или меньшее количество неупорядоченных областей, т. е. аморфной фазы. Следует, однако, оговориться, что, с точки зрения термодинамики, такие полимеры представляют собой однофазную систему (здесь опять проявляется двойственность структуры полимеров, наличие двух структурных элементов). [c.258]

    Каргин с сотрудниками [70] предложили новую структурную модель для кристаллических полимеров. Линейные макромолекулы, расположенные достаточно параллельно друг другу, проходят через несколько упорядоченных и неупорядоченных областей. Такую структуру можно считать ассоциацией цепей макромолекул, которые образуют чередующиеся области с регулярным и нерегулярным расположением .  [c.78]

    В растворах некоторых полимеров молекулы имеют постоянно изменяющуюся конфигурацию неупорядоченно изогнутых клубков и спиралей в других случаях молекулы не являются такими эластичными. Размер молекулы, вычисленный, например, по среднему расстоянию от начала до конца цепи, не прямо пропорционален молекулярному весу. Но характеристическая вязкость зависит от молекулярного веса. Для ряда образцов одного и того же полимера в данном растворителе и при постоянной температуре хорошо выполняется следующее эмпирическое соотношение  [c.612]

    Неупорядоченное состояние (форма статистического клубка) существует из-за того, что в полимере имеется большое число связей, вокруг которых возможно вращение с относительно малым изменением энергии это приводит к тому, что цепь принимает множество альтернативных форм. В состоянии статистического клубка конформация цепи непрерывно флуктуирует между различными возможными состояниями. Чем больше внутренних степеней свободы, тем больше должно быть число возможных переходных форм от одной конформации к другой, н, следовательно, тем труднее молекуле преодолеть тепловое движение, чтобы принять форму, соответствующую минимуму потенциальной энергии. Поэтому неупорядоченному состоянию благоприятствует соединение углеводных остатков посредством трех валентных связей [ср. (1) и [c.289]

    В тот момент, когда напряжение достигнет такой величины, что процесс деформации уже не может развиваться полностью обратимо, в рабочей части испытуемого образца появляется так называемая шейка — местное сужение поперечного сечения образца. На диаграмме растяжения это проявляется в резком падении напряжения. Максимум на кривой а—/ обозначают как предел текучести. При дальнейшей деформации в рабочей части образца происходит процесс перегруппировки и ориентащт цепей аморфной и кристаллической фракций в направлении приложенного усилия. Для ориентации первоначально неупорядоченных цепей полимера достаточно напряжения с постоянной амплитудой, значение которого ниже, чем предел текучести. [c.100]

    В работе [150] были развиты представления о так называемом межструктурном наполнении. Предполагается, что частицы наполнителей, имеющие размеры де 1 мкм, могут располагаться в меж-структурных областях, образованных неупорядоченными цепями в аморфных и проходными цепями в кристаллических полимерах. При этом частицы наполнителя концентриру1ртся на границах раздела надмолекулярных образований. Такие представления позволяют хорошо объяснить значительное влияние наполнителей на [c.178]

    Ионная полимеризация приводит к образованию полимеров упорядоченного или стереоспецифического строения (с. 73), их механические свойства (прочность, эластичность) значительно выше полимеров неупорядоченного строения, получающихся при радикальной полимеризации. Катионная полимеризация инициируется сильными протонными (Н2504) и апротонными (ВРд, А1С1з, ЗпС14) кислотами, которые превращают мономер в карбокатион. По этому механизму протекает полимеризация изобутилена под влиянием веществ, поставляющих протоны (инициаторы протонов) а) Начало цепи  [c.72]

    Однако аморфное состояние полиэтиле1на является крайне неустойчивым и он легко и быстро кристаллизуется (хотя никогда не содержит 100 % кристаллической фазы). Способность полиэтилена к кристаллизации, несмотря на малую величину межмолекулярных сил притяжения, объясняется высокой симметричностью его макроцепи. Естественно, что участки цепей, между которыми действуют силы кристаллической решетки, уже не способны к вращению, он жестко скреплены и составляют основной каркас полимера. Участки цепей, образующие неупорядоченную (аморфную) часть полимера, сохраняют при этом способность к вращательным движеньям звеньев, т. е. к высокоэластической деформации. [c.179]

    При обсуждении этого вопроса мы должны учитывать, что элементом структуры стекла является не единичный атом, а молекула. Простая картина, изображенная на рис. 5.4, соответствует моноатомной жидкости, такой, например, как расплавленный металл (скажем ртуть). Однако моноатомные вещества в твердом состоянии всегда кристалличны. Молекулы неорганических соединений, образующие стекла, например 5102 (силикагель) и В2О3 (окись бора), обладают особым свойством соединяться друг с другом, образуя нерегулярную трехмерную сетку подобно схематически представленной на рис. 5.5, а. Такие структуры напоминают типичные структуры сшитых органических полимеров (ср. с рис. 1.2). Различие между ними состоит в том, что степень сшивания у первых значительно выше, а цепи гораздо короче, чем у полимеров. Неупорядоченная сетка такого типа, конечно, не кристаллическая, заложенная в ней нерегулярность не позволяет образоваться регулярной кристаллической решетке. Для сравнения со структурой аморфного типа на рис. 5.5,6 схематически показано расположение молекул того же вещества в структуре кристаллического типа. [c.93]

    При восстановлении над СиСг-катализатором под давление. получаются соответствующие полиспирты без разрыва основной углеродной цепи. При действии на поликетоны H N в присутствии твердого K N получается желтый твердый полимер, анализ которого показывает, что 80% карбонильных групп превращается в оксинитрильные. При окислении азотной кислотой получается смесь двухосновных карбоновых кислот, показывающая, что в поликетонной цепи кето-группы распределены неупорядоченно. [c.732]

    Процесс стеклования обусловлен изменением сегментальной подвижности цепей в неупорядоченной части полимера. Следующее из принципа температурно-временной зависимости уравнение Вильямса — Лаидела — Ферри [38, с. 251] относится к процессу а-релаксации и учитывает температурную зависимость энергии активации (см. гл. П и V). Процессу а-релаксации соответствует самый высокий максимум потерь (см. рис. 1.19). [c.63]

    Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тш ательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или спагетти , правильно отражает структуры этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому [c.26]

    ПОЛИМЕР-ПОЛИМЕРНЫЕ КОМПЛЕКСЫ (интерполимерные комплексы, поликомплексы), содержат цепи, состоящие из комплементарных макромолекул устойчивые мах-ромол. соединения. Св-ва качественно отличны от св-в исходных полимеров. Так, из р-римых в воде полимеров образуются поликомплексы (П.), нерастворимые в реакц. среде. Получают П. смешением р-ров комплементарных макромолекул и матричным синтезом. Известны П., образованные химически комплементарными сетчатыми и линейными макромолекулами. Такие П. могут быть получены как матричным синтезом, так и путем химически активир. транспорта линейных макромолекул в заранее синтезир. сетчатые полимеры. Схема образования П. из химически комплементарных макромолекул представлена ннже (а и -упорядоченная и неупорядоченная структуры соотв.)  [c.14]

    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Существуют два класса полимеров полностью аморфные и частично-кристаллические. Аморфные полимеры состоят из неупорядоченно-упакованных цепей, состояние которых характеризуется температурой стеклования, выше которой они превращаются из хрупких стеклообразных тел в резиноподобные эластичные вещества. Ниже температуры стеклования статистические молекулярные клубки лишены гибкости, в то время как выше температуры стеклования они становятся гибкими. Частично-кристаллические полимеры ниже температуры плавления состоят из аморфных и кристаллических участков. Аморфные участки реагируют на изменение температуры так, как было указано выше. Кристаллические участки представляют собой кристаллиты, образованные из складчатых цепей. Обычно кристаллические участки имеют морфологию сферо-литов. [c.40]

    Упорядоченная часть в эластомерах состоит из совокупности микроблоков, причем цепи и сегменты, входящие в м икроблоки, можно назвать связанными . Неупорядоченная часть состоит из свободных участков цепей и сегментов, участвующих в свободном тепловом движении. В целом упорядоченная и неупорядоченная части связаны друг с другом в единую структуру, так как различные части одних и тех же макромолекул могут находиться как з свободном, так и в связанном состоянии. Кроме того, все макромолекулы сшиты между собой поперечными химическими связями, если рассматривать вулканизованные каучуки или резины. Рассмотренная модель строения линейных полимеров является динамической. Между обеими структурными составляющими наблюдается медленное подвижное равновесие, сдвиг которого происходит при изменении как температуры, так и напряжения. [c.56]

    Для неупорядоченного полимера соз б /з и формула (VI. 13) дает р1 = оо. То обстоятельство, что неупорядоченный полимер оказывается способным нести нагрузку, может быть объяснено следующим образом. Сегменты цепей, составляюпщх углы с осью образца, не равные нулю, несут некоторую нагрузку, т. е. кроме второй модели как бы частично проявляется I модель. Это играет роль только при малых степенях ориентации и потому приближенно может быть учтено небольшой модификацией формулы (VI. 13), а именно [c.204]

    Анализ результатов исследования структуры некристаллических линейных полимеров различными структурными методами приводит к выводу, что можно считать доказанным существование упорядоченных микрообластей с примерно параллельной укладкой сегментов макромолекул с плотностью на 1—2% большей, чем остальная неупорядоченная часть полимеров мицеллярные микроблоки). Могут возникать упорядоченные микрообласти и при складывании цепей, по аналогии с полимерными кристаллитами гкбкоцепных полимеров. Эти микрообласти складчатые структурные микроблоки) играют роль предзародышей кристаллизации в полимерах. Третий тип упорядоченных микрообластей — микро- [c.126]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    В то же время полимеризация, индуцируемая радикалами, обладает рядом специфических особенностей. Так, например, как разветвленные, так и линейные полимерные молекулы могут быть образованы только в результате развития радикальной цепи за счет отрыва атома водорода от растущих или уже сформированных полимерных молекул, поскольку только такие отрывы могут служить точками роста цепи. Кроме того, твердые полимеры, образующиеся при радикальной полимеризации СН2 = СНХ, характеризуются стереохимически неупорядоченной ориентацией групп X относительно атомов углерода полимерной цепи. Как показывает опыт, такие полимеры, носящие название атактических, не получаются, как правило, в кристаллической форме, имеют низкую температуру плавления и обладают слабой механической прочностью. [c.295]

    По современным представлениям [1] структура нефтяных коксов состоит из конденсированных ароматических колец, упорядоченных в двумер ой плоскости и связанных в пространственный полимер боковыми углеводородными цепочками. Двумерные плоскости, уложенные в пачки из 2—5 сеток с боковыми функциональными группами, представляют собой кристаллиты определенных размеров и структуры. Кристаллиты связаны между собой неупорядоченными углеводородными цепочками. В результате деструкции боковых цепей, происходящей при высокотемпературной обработке, наблюдается двумерная укладка слоёв, их сближение и рост кристаллитов по осям а и с . [c.114]

    Выше было показано, что гибкие макромолекулы простого или регулярного строения при растяжении или охлаждении сравнительно легко укладываются отдельными участками цепей в кристаллиты напротив, для жестких мак-ромолекул процессы точной взаимной укладки отрезков цепей крайне затруднены. Отрезки цепи подобны пачке карандашей, расположенных приблизительно параллельно, но различным образом сдвинутых по длине и повернутых вокруг своей оси. Здесь вновь можно подчеркнуть характерное для полимеров различие между поведением цепей и звеньев молекул. При ориентированном расположении цепей (измеряемом, например, по двойному лучепреломлению) расположение звеньев остается все же неупорядоченным (что видно по рентгенограммам) при охлаждении полярных полимеров с жесткими цепями уже при высоких Tg (стр. 225) происходит застывание как цепей, так и звеньев в стеклообразном, а не в кристаллизованном состоянии. По Каргину, процессы взаимной ориентации цепных молекул не следует смешивать с кристаллизацией полимеров в частности, полимеры типа целлюлозы и ее эфиров, поливинилового спирта и др., несмотря на высокую ориентаиию цепей, следует считать не кристаллическими, а аморфными. Многие исследователи (Марк, Германе, Зайдес, Роговин, и др.), однако, полагают, что целлюлоза обладает ми- [c.236]

    Значительные усилия, во многих случаях небезуспешные, были затрачены на изучение структуры полимеров методом ИК-спектроскопии. ИК-спектры полимеров с кристаллической и аморфной структурами обычно различаются. Этим методом можно исследовать расположение мономерных единиц в полимере и особенности их конфигурации, упаковку и разветвленность цепей. Иногда, например, возможно отличить блок-сополимеры от статистических, если одна из мономерных единиц содержит ассоциативные группы, а другая нет. В этом случае количество ассоциативных групп дает меру неупорядоченности в полимере. В некоторых случаях одна из мономерных единиц чувствительна к окружению, и в сополимере происходит изменение частоты по сравнению с гомополимером. В качестве примера можно привести [216] систему винилхлорид — винилиденхлорид, в спектре которой полоса чистого поливинилхлорида 1250 см (8 мкм) при сополимеризации сдвигается к 1203 см (8,3 мкм). Эта полоса обусловлена колебаниями изолированного фрагмента (—СН2СНС1—) в цепочках поливинил иденхлорида. [c.204]

    В полимерных цепях, находящихся в растянутых неупорядоченных конформациях, должны осуществляться множественные сег-мент-сегментные контакты при этом проявляются некоторые типичные свойства таких взаимодействий. Энтропия смещения растворов двух различных полимеров зависит в первом приближении от числа участвующих в этом процессе молекул и, следовательно, не зависит от молекулярной массы. Энергия же взаимодействия между двумя полимерами в смеси зависит от числа сегмент-сег-ментных контактов и для данного числа молекул должна расти с увеличением их молекулярной массы. Поэтому значение энтропийного члена возрастает по мере увеличения молекулярной массы и поведение полимеров в смеси определяется энергиями взаимодействия, даже когда сегмент-сегментные контакты непродолжительны и энергии их малы. Если взаимодействия между сходными полимерными сегментами более выгодны, чем между несходными, два водных раствора могут разделиться на четкие фазы, которые ведут себя как две несмещивающиеся жидкости. Такое явление часто называют несовместимостью полимеров . Если же взаимодействие между несходными сегментами выгоднее, чем между сходными, то возможно, что два полимера образуют одну общую фазу, подобную жидкости или твердому веществу. Такое явление часто называют комплексной коацервацией . Несовместимость полимеров может оказаться полезной, например, для получения двух не-смешивающихся водных фаз при биохимических разделениях, как в хорошо известной методике выделения плазматических мембран, где в качестве одной из фаз используют полисахарид декстран [22]. На основе комплексных коацерватов полисахаридов и белков, имеющих противоположные заряды (в особенности гуммиарабика и желатины) создана современная технология микроинкапсулирования. [c.291]

    Самопроизвольное растворение аморфных полимеров протекает только при условии, что энергия Гиббса системы, определяемая как AG == АН — ТА5 отрицательная [76]. Это условие может быть выполнено в двух случаях. Если АЯ < О, это означает, что энергия, выделяющаяся при образовании сольватной оболочки растворителя вокруг макромолекулы превышает энергию связи между молекулами как растворителя, так и полимера. V j Bne А5 > О выполняется практически всегда вследствие того, что неупорядоченность молекул полимера в растворе больше неупорядоченности его отдельных компонентов макромолекула в растворе может принимать в результате повышенной подвижности сегментов большее число конформаций, чем макромолекула в твердой фазе. Отсюда следует и тот факт, что полимеры с гибкой цепью растворяются легче, чем полимеры с жесткой цепью, так как полимеры первой группы могут иметь в растворе большее число конформаций. Повышение температуры растворения увеличивает значение энтропийного члена TAS, что отвечает росту скорости растворения. [c.49]


Смотреть страницы где упоминается термин Полимеры с неупорядоченными цепями: [c.21]    [c.64]    [c.45]    [c.117]    [c.51]    [c.36]    [c.126]    [c.128]    [c.386]    [c.332]   
Кристаллизация полимеров (1966) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Неупорядоченность



© 2024 chem21.info Реклама на сайте