Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфология фибриллярные

    Сополимеры фибриллярной целлюлозы, полученные реакцией сополимеризации, инициированной свободными радикалами, сохраняя некоторые характеристики целлюлозы, приобретают и новые свойства. Это расширяет возможности использования целлюлозных волокон для производства текстильных материалов. Морфология волокон может быть изменена направленным образом. Разрушение при истирании гораздо меньше для модифицированных волокон, чем для необработанных за счет этого увеличивается устойчивость к истиранию изделий из этих волокон. Для волокон из сополимеров наблюдается существование вторичных переходов и в некоторых случаях они обладают свойствами термопластов. При высоких степенях прививки получаются каучукоподобные эластомеры. Поверхностные свойства сополимеров (например, их способность к очистке от загрязнений) могут быть улучшены применением виниловых мономеров с гидрофильными функциональными группами. Устойчивость сополимеров к гниению, зависящая от типа применяемого мономера, выше, чем у необработанной целлюлозы. Сшитые сополимерные целлюлозные ткани отличаются большей устойчивостью при стирке по сравнению со сшитыми немодифицированными целлюлозными тканями.  [c.235]


    Тепловое поведение полимерных материалов является их важнейшей характеристикой, определяющей выбор пластмасс и их эффективное использование. Большинство пластиков отчетливо реагирует на, как принято говорить, температуру. Причина этого заключается в цепном макромолекулярной строении полимеров. Чем подвижнее кинетические фрагменты макромолекул, тем рельефнее их реакция на интенсивность теплового поля. Подвижность же макроцепей и, следовательно, температурная деформируемость и прочность определяются химическим строением, физической организацией полимеров (кристаллические или аморфные), морфологией их надмолекулярной структуры (пачечная, фибриллярная, сферолитная, сетчатая), видом и интенсивностью межмолекулярных связей [c.103]

    Одним из важных факторов, определяющих морфологию и свойство сополимеров фибриллярной целлюлозы, является тип винилового [c.229]

    По всей вероятности, должно существовать соответствие между рассмотренными выше межкристаллит-ными связями и морфологией деформируемого расплава. На рис. 6 показана морфология деформируемого расплава, в котором после удаления парафина отчетливо проявляются межструктурные связи. Эти связи напоминают фибриллярные образования, показанные на рис. 5. На рис. 7 воспроизведены межкристаллитные связи, образующиеся между двумя соседними рядами линейных структур в деформируемом расплаве (см. также рис. 2 и 6). Большая часть полимера была вытеснена из области максимального сдвига и вошла в кристаллические образования, видимые в боковой части рис. 7, Весь оставшийся полимер вошел в образовавшиеся межкристаллитные связи, если не считать нескольких крупных структурных элементов, видимых отдельно на пустых участках в нижней части рис. 6 и 7. Эти элементы также представляют собой отдельные кластеры полиэтилена. [c.131]

    Описанные выше экспериментальные данные относятся к морфологии высокоориентированных структур, образующихся в процессе кристаллизации смеси полиэтилена с парафином, сопровождаемой одновременным приложением напряжения на сдвиг. Полученные экспериментальные данные подтверждают предположение о том, что образование фибриллярных структур является свойством, присущим полимеру и не связанным с наличием или отсутствием посторонних зародышей кристаллизации. Однако механизм образования фибриллярных зародышей кристаллизации все еще остается не вполне очевидным. Необходимо проведение дальнейших исследований в этом направлении для получения детальной информации об особенностях молекулярной структуры текущего и неподвижного расплава. [c.135]


    Это обусловливает фибриллярную морфологию кристалла. [c.55]

    Если олигомерный зародыш имеет изометрическую форму, активные центры полимеризации и роста находятся в нем на концах цепей. При замедленном присоединении молекул в процессе полимеризации к растущему кристаллу возможно формирование фибриллярной морфологии. По мере того как зародыш все больше становится похожим на зародыш типа бахромчатой мицеллы (вследствие последовательного протекания полимеризации и кристаллизации), тенденция образования из него фибриллярного кристалла увеличивается вследствие возрастания стерических затруднений на гранях роста. [c.56]

    Х10 г/моль) получена жесткость 2—3 ГПа, прочность 33— 39 МПа и сопротивление удару 300—600 кДж/м [39]. Способами холодной вытяжки и гидростатической экструзии Капац-цио и Уорд [93—98] изготовили высокоориентированиые полимеры (ПЭ, ПП, ПОМ). По-видимому, в этих образцах сохранилась фибриллярная структура. Если увеличить коэффициент вытяжки, то морфология будет характеризоваться в основном непрерывным ориентированием материала, в котором разрывы будут обусловлены только статистическим распределением концов цепей. Таким образом, у все меньшей доли материала будут наблюдаться кристаллы с известной морфологией и ориентированные аморфные цепи, включая проходные молекулы. [c.35]

    P ис. 6.72. Морфология кристаллов полиметилена, выросших при кристаллизации в процессе полимеризации диазометана [2851. а — фибриллярные структуры, образующиеся на начальной стадии реакции б -конечная упакованная структура в — фибриллярные и ламелярные компоненты, наблюдаемые nor те травления образца 6. [c.366]

    Полная характеристика строения вещества основана на детальном описании его морфологии, т. е. совокупности наблюдаемых структурных образований, их формы и границ, взаимного расположения и иерархии (способа построения более сложных из более простых). К основным морфологическим формам кристаллических полимеров относят различные монокристаллы (пластинчатые, фибриллярные, глобулярные) и сферолиты, а также некоторые промежуточные морфологические образования. [c.84]

    Таким образом, возникающие при холодной вытяжке фибриллы полимера следует рассматривать как статистические агрегаты цепей ориентированных макромолекул, параметры которых зависят от интенсивности теплового движения, гибкости цепей полимера, модуля исходного неориентированного полимера и межмолекулярного взаимодействия. Фибриллярная морфология ориентированного полимера обусловлена подвижностью макромолекул в зоне с высокой долей свободного объема (концентраторе напряжения), а также высоким модулем и низкой скоростью релаксационных процессов в стеклообразном или кристаллическом полимере. В этой связи становится понятной обнаруженная в последние годы зависимость параметров фибриллярной структуры от условий деформации полимера (температуры, скорости растяжения и др.) [71, 72]. [c.19]

    С точки зрения описанной выше модели на фибриллярную структуру, возникшую в процессе холодной вытяжки, не должна оказывать решающего влияния морфология исходного полимера, поскольку процессу фибриллизации должен предшествовать процесс разрушения исходной структуры полимера. Этим, видимо, объясняется глубокая аналогия, неоднократно отмечавшаяся ранее [73, 74], процессов холодной вытяжки стеклообразных и кристаллических полимеров. [c.19]

    Растворение природных полимеров облегчается тем, что их морфологическое строение обеспечивает высокоразвитую поверхность. Например, природные целлюлозные волоюна состоят из тонких фибриллярных образований, и проникновение жидкости в них осуществля-ется не только диффузионным путем, ио и путем капиллярного (вязкого) течения. Именно это обстоятельство обусловливает относительно быстрое протекание различных реакций. Например, в ходе реакций этерификации доступ реагента осуществляется не только путем молекулярной диффузии, но в первую очередь путем капиллярного течения реагента во внутренние области структуры целлюлозных волокон. Сохранение морфологии исходного волокна после этерификации обеспечивает такой же характер поступления и растворяющих агентов. С вопросом о механизме проникновения жидкости в природные полимеры связаны, таким образом, и реакционная [c.217]

    Фактические значения температуры, температурных градиентов и ориентационных напряжений имеют для каждого полимера свои значения. Исследования морфологии жестких эластичных структур показали, что они образованы рядами ламелярных" агрегатов, возникающих вследствие уже рассмотренного механизма фибриллярного зародышеобразования [33]. При отжиге эта ламелярная суперструктура становится еще более совершенной (ламели располагаются почти перпендикулярно направлению вытяжки), одновременно наблюдается и некоторое увеличение толщины ламелей. [c.61]


    К моменту полного перехода материала в шейку полностью меняется морфология кристаллов от исходной (чаше всего сфе-ролитиой) в фибриллярную с высокой степенью орнентацин в кристаллических и аморфных участках Стадия II соответствует деформацни ориентированной структуры шейки Она протекает по упругому механизму на этом участке полимер имеет высокий модуль и низкую податливость. [c.315]

    Рассмотрим теперь структуры, возникающие в ориентированных кристалло-аморфных полимерах. Наиболее характерной из них является структура с морфологией типа шиш-кебаб, впервые обнаруженная при кристаллизации полимеров в текущем растворе, а затем наблюдавшаяся при кристаллизацип в самых разных условиях с обязательным, однако, условием наличия факторов, вызывающих одноосную молекулярную ориентацию полимерных цепей. Эта структура, четко обнаруживаемая с помощью электронной микроскопии (рис. XVI. 1), характеризуется наличием центральной области — фибриллярной нити, на которой имеются своеобразные наросты. Сначала думали, что центральная нить представляет собой однородное образование, фибриллярный зародыш типа КВЦ, но затем Келлер обнаружил, что она сама может иметь структуру типа шиш-кебаб и состоять из более тонкой нити КВЦ, окру- [c.368]

    В соответствии с изложенными в разделе 1.1.2 представлениями о двух структурных уровнях в целлюлозе — фибриллярном и морфологическом, следует отдать предпочтение второй точке зрения, т. е. предположить, что суш,ествуют гель-частицы двух типов. Первый тип — это нерастворившиеся волокна или их крупные фрагменты. Их удобно назвать макрогель-частицами. Содержание этих частиц размером 20—50 мкм в 1 мл раствора— 10—150. Для гель-частиц этого вида определяюш,ее значение имеет морфология волокон, т. е. строение клеток, их возраст и расположение в древесине. Второй тип частиц — микрогель-частицы. Число таких частиц размерем 5—10 мкм может достигать нескольких тысяч. Представляется логичным связывать суш,ествование этих частиц с упорядоченными (кристаллическими) участками фибрилл [38]. [c.144]

    Таким образом, эффект самоармирования проявляется в рассматриваемых волокнах в виде упорядочивания асимметричных частиц и в виде образования системы уплотненных фибриллярных элементов структуры, пронизывающих менее плотный и менее упорядоченный материал. Влияние морфологии на механические свойства волокон проявляются в том, что вследствие существова- [c.122]

    Последующие работы показали, однако, что характер структуры зависит от условий приготовления объекта. Например, пленка НК, приготовленная из бензольного раствора, характеризуется полосатой структурой, а пленка, отлитая из разбавленного раствора петролейного и серного эфиров, имеет фибриллярное строение [46]. Влияние растворителя на морфологию пленок, рассматриваемых в электронном микроскопе, отмечается также в работах [50—52]. Другие исследователи вообще не обнаружили полосатой структуры [53], и в настоящее время становится все более очевидным, что полосатые структуры в эластомерах являются артефактами [54]. Для доказательства правильности электронно-микроокопических наблюдений рекомендуется подтверждать их данными рентгеновских исследований [54]. [c.39]

    Эндрюс, Оуэн и Рид [76] исследовали морфологию кристаллических образований в НК и ее влияние на прочность в интервале температур от — 20 до —120°. Кристаллообразование проводилось при растяжениях от О до 600% с фиксацией его в криостате при —26°, При температурах выше —73° (температура стеклования) сопротив иение разрыву мало чувствительно к морфологии кристаллов (фибриллы, сфе-ролиты), и прочность в этой области температур такая же, как у незакристаллизованных вулканизатов при 20°. Ниже температуры стеклования материал со сферолитной структурой становится хрупким и его прочность резко снижается, а прочность материала с фибриллярной структурой оказывается выше в несколько раз. [c.70]

    Различия в поверхностной энергии наполнителей также влияют на морфологию, как было показано на примере фенолоформальде-гидных смол [97]. Применение кристаллических наполнителей (алмаз, нитрид бора и др.) позволило выявить"различия в структуре слоев полимера на гранях кристаллов, обладающих различной поверхностной энергией. Различие адсорбционных потенциалов граней кристаллов приводит к тому, что глобулярная структура, характерная для исходного полимера, может переходить в фибриллярную, диаметр фибрилл которой составляет от 50 до 600 А, с поперечным разделением агрегатов. Структура смолы, наполненной частицами алмаза, характеризуется большей равномерностью размеров глобул (50—100 А) по сравнению со смолой, наполненной графитом, в которой размеры глобул колеблются от 50 до 300 А. Таким образом, структура, формирующаяся в присутствии частиц с высокой поверхностной энергией, более однородна. В работе [101] установлена также корреляция между морфологией наполненного полимера и его механическими свойствами. Менее раз-, витый структурный рельеф (небольшие размеры надмолекулярных образований, размывание границ между крупными агрегатами, а также между наполнителем и связующим) обусловливает более высокие показатели механических свойств, а эти эффекты, в свою очередь, зависят от поверхностной энергии наполнителя. [c.51]

    В настоящей статье описаны свойства привитых и блоксополимеров фибриллярной хлопковой целлюлозы химическая структура, морфология, физические свойства. Изучено влияние инициаторов свободнорадикальной сополимеризации целлюлозы с винильными мономерами на свойства полученных образцов. [c.223]

    Влияние способа инициирования и типа инициатора свободнорадикальной сополимеризации акрилонитрила с фибриллярной целлюлозой на свойства ткани, полученной из этого сополимера, про-иллюстрируется данными табл. 4 [31]. Молекулярный вес привитого сополимера изменяется от 3,3 10 до 5,9-10 и зависит от способа инициирования и условий эксперимента. Между молекулярным весом привитого сополимера и свойствами ткани на его основе нет определенной зависимости. При условиях реакции сополимеризации Б получаются модифицированные ткани с более высокими значениями разрывной прочности, сопротивления раздиру и истиранию при изгибах и в плоскости. Улучшение свойств обусловлено отчасти влиянием условий эксперимента на морфологию волокон, а также тем, что поперечное сечение волокон круглое и привитой полимер распределен однородно по поперечному сечению. При условиях реакции А начальная форма поперечного сечения целлюлозных волокон пе изменяется, а привитой полимер концентрируется в наружных слоях волокна. Ткань, полученная этим методом, характеризуется повышенным сопротивлением истиранию при изгибах и в плоскости и более высокой разрывной прочностью по сравнению с контрольной тканью (из немодифицированной хлопковой целлюлозы). Однако ее сопротивление раздиру меньше, чем у контрольного образца, а сопротивление истиранию при изгибах ниже, чем у образца, полученного в условиях Б. Метод Б может быть развит в непрерывный процесс, при котором ткань вначале погружают в раствор винилового мономера и затем облучают. При всех указанных способах получения сополимеров происходит уменьшение молекулярного веса целлюлозы вследствие окислительной деструкции. [c.229]

    Поэтому вполне возможно, что увеличение отрицательного температурного коэффициента кристаллизации при растяжении происходит вследствие изменения морфологии образующихся структур. Характер изотерм доказывает изменение морфологии. Известны также прямые морфологические доказательства [5, 19], согласно которым при растяжении натурального каучука происходит переход от сферолитной формы роста в фибриллярную. Исследование [19] кристаллизации натурального каучука в поляризационном микроскопе показывает, что при растяжении тонкой аморфной пленки наблюдается определенный переход от сферолитпого к одноосному росту кристаллов, параллельному направлению растяжения. Эндрюс [5] показал, что с увеличением деформации сферолитные кристаллы невытянутой пленки натурального каучука постепенно переходят в фибриллярные. Таким образом, наблюдаемые температурные коэффициенты при больших растяжениях отражают образование отдельных кристаллитов и потому можно ожидать высоких значений свободной поверхностной энергии. [c.85]

    Полимеризация 4-винилпиридина на поликислотах протекает при комнатной температуре даже в очень разбавленных растворах, т. е. частицы активированного мономера независимо от средней концентрации группируются вдоль цепей полимерного активатора. Однако при данной средней копцентрации скорость полимеризации очепь сильно зависит от степени заполнения матриц , резко возрастая при приближении ее к единице. Морфология продуктов полимеризации, представляющих собой полисоли, тесио связапа с формой молекул К. п. в р-ре. Так, при полимеризации в метаноле, где макромолекулы полисоли свернуты в глобулы, полисоль образуется в виде неупорядоченных глобулярных агрегатов, В водном р-ре, где матрицы ионизированы и распрямлены, подучаются отчетливо выраженные фибриллярные структуры. [c.485]

    В первом томе этой книги, состоящем из четырех глав, образованные макромолекулами кристаллы охарактеризованы на молекулярном уровне степенью сохранения дальнего порядка в положении атомов и самим положением атомов макромолекулы в кристаллической решетке (разд. 2.4). Показано, что факторами, определяющими образование различных кристаллических структур, являются потенциальные барьеры вращения вокруг ковалентных связей, существование поворотных изомеров и соблюдение принципа плотнейшей упаковки (разд. 2.3). Морфология кристаллов, как было обнаружено, тесно связана с макроконформацией молекул полимеров (разд. 3.2), а ла-мелярная и фибриллярная формы кристаллов являются наиболее общими и наиболее хорошо сформированными габитусами полимерных кристаллов (разд. 3.3 и 3.8). В разд. 4.2 и 4.3 также показано, что детальная характеристика кристаллического состояния линейных макромолекул в большой степени осложняется наличием кристаллических дефектов. [c.15]

    Морфология макромолекулярных кристаллов, выросших в условиях приложения к образцу сдвиговых напряжений, является в основном фибриллярной (шиш-кебаб, см. рис. 3.79, 3.80, 3.136). При детальном анализе этих кристаллов установлено, что структура их неоднородна. Внутренняя часть кристаллов представляет собой макроскопически гладкое тонкое волокно из вытянутых цепей макромолекул, что позволяет рассматривать его структуру как близкую к исходному зародышу. Волокно обычно покрыто кристаллическими структурами из нерегулярных ск ладок цепей. Если кристаллизацию проводят при достаточно низких температурах, то за этими структурами следует слой ламелей из более регулярно сложенных цепей и внешне весь образующийся кристаллический агрегат напоминает шиш-кебаб (подробно см. в разд. 3.8.2). Первые свидетельства того, что остаточная деформация, вызванная предварительной ориентацией образцов, может усиливать зародышеобразование, были получены при изу- [c.94]

    ЗЫ, грань (001) не наблюдается даже при медленной кристаллизации [361, 362]. Некоторые исследования в направлении изучения морфологии таких кристаллов были проведены Хартманом и Пердоком [142]. На основании сравнения морфологии многих кристаллов и характера связей внутри кристалла они прищли к выводу, что сильные связи должны образовываться более легко, чем слабые, что в предельном случае, как, например, в случае 8182, должно приводить к образованию фибриллярных кристаллов (см. также [141]). В разд. 6.4 3.8, 5.1.2.5 показано, что эта тенденция более быстрого роста кристалла в направлении сильных связей проявляется в еще большей степени за счет возможного появления осложнений образования зародышей кристаллизации при росте под прямым углом к направлению молекулярной цепи. [c.170]

    Уравнение (33) строго применимо для сферической морфологии кри. 1 1ллов, образующихся в трехмерном образце. Сферолитная кристаллизация достаточно хорошо соответствует сферической морфологии в том случае, когда сферолит четко выражен и когда кристаллизация завершается вблизи границы сферолита (см. ниже). Однако многие полимерные образцы кристаллизуются с образованием простой ламелярной (разд. 3.3) или фибриллярной (разд. 3.8) морфологии. Морган [282] проанализировал процесс фибриллярного роста. Беря за основу метод вывода уравнений (32а) и (326), можно предположить, что фибриллы диаметром выходящие из сферической оболочки объемом 4ттг2 йг, приближаются к точке Р со скоростью г>. Однако вероятность достижения этой точки для них не равна единице, как р. случае растущих сфер, а уменьшается. Это уменьшение [c.184]

    Для этих уравнений характерны те же ограничения, что и для описывающих фибриллярную морфологию. Взаимопроникновение ламелей доказывают рис. 3.41 и 3.77,5. [c.186]

    При дальнейшем рассмотрении общих вопросов кристаллизации в процессе полимеризации (в этом разделе) и отдельных примеров (в разд. 6.4) будут разобраны процессы полимеризации мономера из газовой, жидкой (расплавов и растворов) и твердой фаз. Во всех возможных случаях дет указана последовательность протекания полимеризации и кристаллизации. Главная цель настоящего обсуждения заключается в том, что .1 увязать, насколько это возможно, особую морфологию образующихся кристаллов (фибриллярную и изометрическую), макроконформацию молекул (вытянутую), описанных в разд. 3.8.1, [c.247]

    Складывание макромолекулы (разд. 3.2.2.1) препятствует росту кристалла в направлении ее цепи. При медленной кристаллизации из разбавленных растворов в отсутствие перемешивания обычно образуются метастабильные ламели толш шой 50—200 A и с большими поперечными размерами. При перемешивании разбавленных растворов или приложении к ним напряжения иным способом образуются большей частью фибриллярные кристаллы (структура шиш-кебаб, см. разд. 3.8.2). Повышенное гидростатическое давление, как показано в разд. 6.2.3, оказывает небольшое влияние на морфологию кристалла, если не считать обычного эффекта увеличения степени переохлаждения, вызываемого увеличением давления. [c.253]

    Количественная оценка всех этих эффектов в настояшее время затруднена в связи со сложностью описания морфологии кристаллов и молекулярной конформации, в частности кристаллов, вырашенных из расплавов в условиях деформирования. В обших чертах известно, что при увеличении деформации расплава морфология изменяется от сферолитной до деформированной сферолитной, затем до различных форм структур типа шиш-кебаб и, наконец, до фибриллярной. Однако данных еще недостаточно, чтобы обсуждать изменения в кинетике кристаллизации, вызванные изменением морфологии и макроконформации. Недавние работы по электронной микроскопии тонких деформированных пленок свидетельствуют о том, что эти фибриллы являются, по-видимому, дискретными вдоль оси, и это указывает на их возможную зернистую структуру (относительно этих идей для случая кристаллизации в ненапряженном состоянии см. разд. 6.1.7 и рис. 6.34-6-36). (Такие исследования проведены на яряис- , 4-поли-2-метилбутадиене [135], поликарбонате, изотактическом полиметилметакрилате и полистироле [206], а также на изотактическом полистироле [411].) В настоящее время эти эффекты недостаточно понятны и вносят неопределенность в представления о влиянии деформации на кристаллизацию. [c.320]

    Штаудингером с сотр. [354] было показано, что кристаллические волокна, образующиеся при сублимащи -полиоксиметилена, являются макромолекулярными и что оси молекулярных цепей ориентированы вдоль оси волокна (см. разд. 3.2.1 и 3.8.1, рис. 3.6 и 3.127 относительно фибриллярной морфологии и табл. 2.14 и рис. 2.49 относительно кристаллической структуры). [c.351]

    Тетрафторэтилен = -142,5°С, = -76,3°С) имеет предельную температуру полимеризации 560°С. Эта температура достаточно выше температуры плавления политетрафторэтилена (327°С), чтобы кристаллизация протекала только одновременно с полимеризацией при высоких степенях пересыщения или низком давлении паров. При разложении полимера небольшое количество мономера осаждается на холодных стенках и полимеризуется с образованием фибриллярных макромолекулярных кристаллов (разд. 3.8.1, рис. 3.131). Реакция полимеризации протекает по радикальному механизму, это приводит к малому выходу полимера вследствие низкой скорости реакпци инициирования и последующих затруднений, вызванных процессами зародышеобразования и роста. Более толстые пленки были получены Той-ем [373] на поверхности металлов, активированной фтором, однако далее они не были проанализированы (температура 100°С, давление мономера 4 атм, время осаждения 1 — 1 8 ч). Изменения в морфологю образующихся кристаллов бьивд обнаружены при изменении температуры паров и подложки [275]. Дальнейшее обсуждение этого вопроса возможно только после дополнительных исследований. [c.354]

    Рост фибриллярных кристаллов в приблизительно тех же условиях был объяснен Георгиадисом и Манли [117] образованием коллоидных частиц катализатора или возникновением в растворе сдвиговых напряжений. Как известно, и то, и другое может привести к росту фибриллярных образований (см. ниже о влиянии гетерогенного катализатора, а в разд. 6.2.2 о влиянии перемешивания на морфологию кристаллов). Араи и др. [6] предположили, что полимеризация этилена, инициированная у-излучением, может протекать аналогичным путем. [c.363]

    Морфология кристаллов, полученных при полимеризации диазометана, показана на рис. 6.72. Криста,1лы, образующиеся в начале полимеризации, являются фибриллярными. Хорошо сформированные и плавящиеся при высоких температурах волокна образуются преимущественно при высокой концентрации олигомера (инициатора). На более поздних стадиях криста.члизации происходит все большее срастание волокон и образование сплошной нерегулярной сетки. Предполагается, что в этом случае полимеризация и кристаллизация протекают последовательно. Степень кристалличности и температуры плаапения образцов, закристаллизовавшихся в процесс полимеризации, выше, чем кристаллов, выросших из расплава при охлаждении. При понижении температуры полимеризации до -50° С степень кристалличности образующегося полимера становится меньше [254]. [c.367]

    Рассмотренные примеры показывают, что одновременные полимеризация и кристаллизация возможны и обычно протекают при проведении реакции вблизи предельной температуры полимеризации (разд. 6.1.8). При условиях, далеких от равновесных, более вероятным является последовательное протекание полимеризации и кристаллизации. При одновременном осуществлении полимеризации и кристаллизации, образующиеся вначале олигомерные ламели могут вырастать в кристаллы из вытянутых цепей. При последовательном протекании полимеризации и кристал.шзации морфология кристаллов изменяется от ламелярной до фибриллярной, а макроконформация цепей — от регулярных складок до нерегулярных и даже до макрокон-формации типа бахромчатой мицеллы. Основное влияние кристаллизащи на химическую реакцию полимеризации заключается в изменении ее скорости и механизма, а также з возможном обрыве реакции роста цепей вследствие окклюзии их активных концов. Однако в любом случае должна быть достигнута достаточно высокая концентрация олигомеров в результате гомогенной реакции полимеризации (разд. 5.1.2). В ступенчатых реакциях полимеризации после образования кристаллических зародышей концентрация олигомеров уменьшается и далее реакщ1И протекают по механизму полиприсоединения. Олигомерные молекулы могут участвовать в образовании молекулярных зародышей и затем расти далее. В результате этого происходит полное превращение мономера в полимер. В реакциях полиприсоединения возникшие молекулы олигомеров растут далее только в результате последовательного присоединения к ним молекул мономера. При большой начальной концентрации олигомеров количество образующихся длинных молекул уменьшается. [c.395]

    Исследование морфологии макромолекулярных кристаллов позволяет сформулировать общий принцип, согласно которому регулярные гибкие, в достаточной мере подвижные макромолекулы кристаллизуются обычно с образованием макроконформаций сложенных цепей (разд. 3.2.2.1). Как правило, наблюдаемая длина складок колеблется от 50 до нескольких сот ангстрем (см. табл. 3.3 и рис. 3.42 - 3.51). Несмотря на то что поперечные размеры таких кристаллов могут быть велики, они являются метастабильными кристаллами. Частое складывание приводит к появлению большой поверхности, в которой сосредоточены складки, вследствие чего возрастает свободная энтальпия и уменьшается температура плавления (см. рис. 4.13, а также разд. 3.2.2.5 и гл. 2). В тех случаях, когда подвижность недостаточна для складывания цепей, происходит образование кристаллов мицеллярного типа, размеры которых малы во всех направлениях (см. рис. 3. а также разд. 6.1.7). Размеры таких кристаллов даже меньше, а сами они более дефектны, чем ламелярные кристаллы со сложенными цепями (разд. 4.2.1). Наконец, кристаллизация в процессе полимери-защи часто приводит к образованию фибриллярных кристаллов (разд. 3.3.1 и 3.8.3). Эти фибриллы могут содержать больше выпряденных макромолекул, однако в тех случаях, когда эти фибриллы достаточно тонкие (и дефектные), они также метастабильны. Таким образом, все три основных типа макромолекулярных кристаллов - ламелярные, мицеллярные и фибриллярные - метастабильны и поэтому способны изменяться при отжиге. Изометрические кристаллы макроскопического размера - редкое явление (разд. 3.9, рис. 3.141-3.143). [c.446]

    Пельцбауэр и Мэнли [181] получили кристаллы типа шиш-кебаб изотактического полистирола из перемешиваемого 0,5 вес.%-ного раствора пoли lepa в мезитилене при температурах 25 иЛОО°С. Полученные фибриллярные кристаллические образования перегревались лишь умеренно. Их двойная морфология была установлена на основании различного поведения двух форм составных кристаллов при отжиге, в результата которого происходила главным образом рекристаллизация. [c.287]

    Рассмотрим основные особенности фибриллярной структуры полимера, полученной в процессе холодной вытяжки. Структура такого рода представляет собой плотноупакованный агрегат фибриллярных элементов диаметром от нескольких единиц до десятков нанометров. Несмотря на их плотную упаковку, фибриллярные элементы имеют четко выраженные межфазные границы раздела, которые хорошо регистрируются электронно-микроскопически [46, 47] и с помощью рентгеноструктурного анализа [48]. Механические свойства ориентированного полимера во многом обусловлены существованием реальных физических границ раздела между фибриллами. По мнению Петер-лина, главное сопротивление деформации оказывают квазивяз-кие силы трения на высокоразвитых поверхностях сдвигающихся друг относительно друга фибрилл [49]. Не менее сильное влияние фибриллярная морфология оказывает и на прочностные свойства аморфных и кристаллических полимеров [50, 51]. В работе [46] обобщен обширный экспериментальный материал по изучению фибриллярной морфологии большого числа волокон на основе природных и синтетических полимеров, и показано, что практически любые ориентированные полимерные системы имеют фибриллярную структуру. Диаметр отдельных фибрилл в такой структуре изменяется от нескольких нанометров до десятков нанометров. [c.12]


Смотреть страницы где упоминается термин Морфология фибриллярные: [c.105]    [c.111]    [c.7]    [c.111]    [c.53]    [c.362]    [c.394]    [c.288]    [c.13]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.92 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Морфология

Фибриллярные кристаллиты морфология



© 2025 chem21.info Реклама на сайте