Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение Энергия Гиббса

    Как изменяется энергия Гиббса (изобарно-изо-термический потенциал) системы при растворении сахара в воде при постоянных температуре и давлении  [c.33]

    Химический потенциал растворенного вещества равен парциальной молярной энергии Гиббса  [c.595]

    Избыточная энергия Гиббса бинарного раствора, состоящего из m моль растворителя и т моль растворенного вещества, равна сумме избыточных энергий Гиббса растворенного вещества и растворителя  [c.380]


    Под процессом сольватации будем понимать процесс перехода иона из вакуума в раствор. Этот процесс аналогичен процессу растворения газа в жидкости. Под энергией сольватации понимают изменение энергии Гиббса в процессе сольватации. Одно из наиболее простых, хотя и не очень точных выражений для энергии сольватации, дает формула Борна. Представим ион в виде сферической, равномерно заряженной оболочки радиуса г. Энергия образования этого иона в вакууме [c.227]

    Мы сочли необходимым ввести в курс понятия об энтропии 5 и ее изменении А5 и об изменении энергии Гиббса АО, так как твердо уверены в том, что нельзя излагать химию в вузе, опираясь только на понятие о тепловых эффектах АН. С другой стороны, мы отдавали себе отчет в том, что на первом курсе информация о величинах АО и Д5 не может быть ни полной, ни строгой она в доступной форме должна передавать лишь главное, давая общую ориентировку. Приучить студентов с первого курса пользоваться энтальпийными и энтропийными характеристиками — это означает не только привить им навыки изучения с общих позиций самых различных процессов (химическое взаимодействие, растворение и т. д.), но и подготовить их к постоянному применению этих фундаментальных характеристик — вначале на материале неорганической, а затем аналитической и органической химии. В курсе физической химии эти представления получат дальнейшее развитие, уточнение, детализацию, будут поставлены на прочный математический фундамент. Поэтому, в частности, при рассмотрении окислительно-восстановительных реакций уделено внимание не только составлению уравнений, т. е. чисто формальной стороне, но и решению вопроса о направлении этих процессов, [c.5]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]


    При этом переходе изменение Л// невелико. В то же время вследствие увеличения в результате реакции числа растворенных частиц и, следовательно, увеличения неупорядоченности системы наблюдается заметное возрастание энтропии. Большое повышение энтропии приводит к большому понижению энергии Гиббса. Повышение устойчивости хелатных структур по сравнению с не-хелатными обусловлено, следовательно, прежде всего энтропийным фактором. [c.188]

    Соотношение (2.30) между стандартным изменением энергии Гиббса процесса и константой его равновесия является универсальным. Оно применимо к любому равновесию - к диссоциации электролита в растворе (см разд. 6.5), к равновесию между кипящей жидкостью и сухим насыщенным паром (в этом случае величина К равна давлению пара прн данной температуре), к равновесию растворенное вещество - насыщенный раствор (величина К равна концентрации вещества в насыщенном растворе, т. е. растворимости). Сочетание уравнений (2,30) и (2.27) позволяет найти константу равновесия окислительно-восстановительной реакции по эдс гальванического элемента, действие которого основано на этой реакции. Из (2.30) следует, что АС <0 отвечает К>. Это означает, что в равновесной смеси преобладают продукты реакции и при больших положительных значениях К реакция идет практически до конца. Наоборот, если АС >0, то в равновесной смеси преобладают исходные вещества (/С<1), т. е. реакция практически не идет. Если же АС - О, то ЛГ - I и реакция одинаково проходит как в прямом, так и в обратном направлении. Например, при 25 С для реакции [c.210]

    ЛНТ — энтальпия смешения /-го компонента, называемая дифференциальной теплотой растворения. Энергию Гиббса смешения определяют [c.164]

    На основании полученных значений ПР солей по уравнениям (8) — (10) рассчитывают изменение энергии Гиббса, энтальпию и энтропию растворения. Полученные результаты записывают в таблицу (см, табл. 11) и проверяют у преподавателя. [c.88]

    В соответствии со вторым законом термодинамики, растворение протекает самопроизвольно лишь при убыли энергии Гиббса  [c.297]

    Под поверхностной активностью понимают способность растворенного вещества понижать поверхностную энергию Гиббса на данной поверхности раздела фаз. В качестве меры поверхностной активности П. А. Ребиндер предложил использовать величину О, определяемую выражением [c.17]

    Растворы играют важную роль е живой и неживой природе, а также в науке и технике. Физиологические процессы в организмах животных и в растениях, всевозможные промышленные процессы (например, в производстве щелочей, солей), образование осадочных пород и другие в большинстве своем протекают в растворах. Повсеместность растворов объясняется, в частности, и тем, что процесс растворения самопроизволен, т. е. сопровождается убылью энергии Гиббса. Поэтому найти чистые вещества в естественных условиях или приготовить их в лаборатории чрезвычайно трудно. [c.138]

    Возможность самопроизвольного формирования и растворения структурных единиц в дисперсионных средах определяется уменьшением изменения энергии Гиббса  [c.37]

    Вещество может растворяться самопроизвольно, когда энергия Гиббса уменьшается АО=АЯ—ТД5, ДС<0. При растворении вещества (особенно в твердом состоянии) энтропия системы увеличивается А5>0. Как правило, растворимость твердых веществ в жидкостях растет при нагревании и зависит как от природы вещества, так и от природы растворителя. На рис. 8.1 в качестве растворителей взяты НаО, СНзОН, СгНбОН. Анализ кривых раст- [c.196]

    Работа адгезии Wa - работа обратимого разрыва адгезионной связи, отнесенная к единице поверхности. В отличие от растворения при явлении адгезии система остается двухфазной, но первоначальная энергия Гиббса AG уменьшается на величину, равную работе адгезии  [c.5]

    Изменение энергии Гиббса в процессе растворения AGf определяют по уравнению  [c.86]

    Энергия Гиббса исходной соли, растворенной в числе л молей и имеющей концентрацию, равную С, может быть записана в виде [c.239]

    Будем считать, что обе соли в количествах л, и nj растворены и образуют раствор с концентрациями С, и j соответственно. Тогда энергию Гиббса растворенных солей можно записать в виде [c.240]

    Следует подчеркнуть, что соотношение между стандартным изменением энергии Гиббса процесса и константой его равновесия является универсальным. Оно применимо к любому равновесию — и к диссоциации электролита в растворе (см. раздел IV, гл. IV), и к равновесию между кипящей жидкостью и сухим насыщенным паром К — давление пара при данной температуре), и к равновесию растворенное вещество — насыщенный раствор (К = С с)-Сочетание уравнений (11.20) и (П.15) позволяет найти константу равновесия и в электрохимическом процессе. [c.76]


    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]

    Процесс растворения сопровождается значительным возрастанием энтропии системы, так как в результате равномерного распределения частиц одного всщсства в другом резко увеличивается число микросостояний системы. Поэтому, несмотря на эндотер-мичиость растворения бол1,шинства кристаллов, изменение энергии Гиббса систсмы при растворении отрицательно и процесс протекает самопроизвольно. [c.216]

    Можно получить и пересыщенный раствор, т. е. такой, концентрация которого выше концентрации насыщенного раствора (при данных температуре и давлении). Пересыщенные растворы можно приготовить осторожным и медленным охлаждением насыщенных [фи высокой температуре растворов, например солей ЫагЗгОз и Ha OONa. Пересыщенный раствор представляет собой систему, находящуюся в кажущемся равновесии (А6-> 0). Встряхивание пли внесение в него кристаллов того же вещества, которое находится в растворе, или другого, например изоморфного с ним, вы-. l,lвaeт кристаллизацию происходит выделение избытка растворенного вещества и раствор становится насыщенным. Система таким образом переходит в состояние истинного равновесия, что сопровождается убылью энергии Гиббса.  [c.233]

    По термодинамическим свойствам растворы классифицируют на идеальные и неидеальные. Идеальным называют раствор, в процессе образования которого уменьилается энергия Гиббса, возрастает энтропия, а объем, энтальпия, внутренняя энергия и теплоемкость не меняются. Невыполнение одного из этих условий приводит к образованию неидеального раствора. Идеальные растворы подчиняются законам Вант-Гоффа и Рауля, связывающих моляльную концентрацию раствора с такими его свойствами, как осмос, понижение давления пара растворителя над раствором, повышение температуры кипения и понижение температуры замерзания. Эти свойства называют коллигативными, поскольку они зависят только от концентрации, но не зависят от природы растворенного вещества. [c.23]

    II связана, собственно, самопроизвольность процессов растворения, даже при нх эндотермичности. В самом деле, при раство е-ппи в системе возрастает степень беспорядка и это, естествс ино, характеризуется увеличением энтропии, а с последним до, 1жио быть связано умен1>шенне энергии Гиббса. [c.161]

    Движун1ая сила процесса растворения, равно как и любого фн-знко-хнмичеекого процесса, выражается уменьшением энергии Гиббса системы. Как известно, изменение эне згии Гиббса связано с изменением энтальпии и энтропии системы следующим равенств ом  [c.161]

    Карбиды, силиды. Железо с углеродом образует два соединения— крайне неустойчивый карбид состава Fea , который обычно переходит в карбид состава РезС, называемый цементитом-, последний также термодинамически неустойчив, но при растворении в железе его устойчивость повышается и в составе различных сталей находится именно цементит. Энтальпия образования цементита + 25 кДж/моль, энергия Гиббса образования +18,8 кДж/моль. Цементит представляет собой серые кристаллы ромбической системы, очень твердые, с плотностью 7,7 г/см и температурой плавления 1560°С энтропия Ре С 108 Дж/(моль-К). В воде не растворяется, с кислотами реагирует е выделением водорода. Цементит хорошо растворим в Y-железе, меньше — в б-железе и совсем мало в Oi-железе. Иэ диаграммы состояния еистемы Ре — РезС (рис. 50) видно, как изменяется растворимость цементита в железе в зависимости от температуры. Твердый раствор цементита в v-железе называется аустенитом. Растворимость цементита в 7-железе при эв- [c.305]

    Согласно второму закону термодинамики, для самопроизвольного растворения ассоциатов необходимо отрицательное значение AG. В этом случае возможно пошное (AG<0) или частичное растворение (AG 0) ассоциатов. Критическая температура, соответствующая пределу насыщения ВМС в системе (частичное растворение— плохой растворитель), определяется отношением энтал ,-пии к энтропии смешения. При положительных значениях энергии Гиббса (Д0>0) растворения ассоциатов не происходит (нерастворитель). Таким образом, задача расчета сводится к определению [c.154]

    Смеи енне полимера с низкомолекулярным растворителем (набухание и растворение) — самопроизвольный проиесс н поэтому протекает с уменьшением энергии Гиббса системы (VI. 25)  [c.315]

    Теплота растворения зависит от природы компонентов системы и концентрации образующегося раствора. Она может принимать как полох<ительные (ДЯр >0), так и отрицательные (АЯр < 0) значения. Энтропия системы при образовании растворов в большинстве случаев растет (ASp>0). Исключением является лишь растворение газов в жидкостях, где энтропия системы убывает (ASp O). Изобарный потенциал (энергия Гиббса) системы при образовании растворов всегда убывает (А(7р<0), что подтверждается самопроизвольностью этого процесса. [c.152]

    Энергия Гиббса при растворении убывает (А0р,т<0), так как растворение — самопроизвольный процесс. 2.5. Давление насыщенного пара понизится на 8,55 Па. 2.6. а = 0. 3.1. Давление насыщенного пара различается. Оно будет всегда больше над раствором летучего вещества по сравнению с раствором нелетучего. 3.2. Величина ДЯ1 растет, так как АР1/Р1 = Л 2 = сопз1, а давление пара над чистым растворителем Р1° с ростом температуры увеличивается. 3.3. Молярная энтропия и парциальная молярна энтропия различаются на величину 5 —5 =Р1п/У , причем 5,-°>5г, так как Л г<1. 3.4. Независимо от ассоциации (или диссоциации) нелетучего растворенного вещества давление пара над раствором всегда меньше давления пара над [c.96]

    В гетер)Огенных системах пограничные слои молекул жидкостей и твердых тел, расположенные на межфазных поверхностях раздела, обладают избытком энергии Гиббса по сравнению с молекулами внутри объемов фаз. Это служит причиной физических и химических процессов, протекающих на фазовых границах. Такие процессы называют поверхностными явлениями. Важнейшие из них — адсорбционные процессы. Они понижают поверхностную энергию Гиббса системы, поэтому протекают самопроизвольно и приводят к накоплению растворенных веществ или газов на границах раздела фаз. Очевидно, чем сильнее развита поверхность раздела фаз (высокая степень измельчения или пористости вещества), тем больше свойства системы в целом зависят от ее поверхностных свойств. Этим объясняется решающая роль поверхностных явлений для дисперсных систем, имеющих огромную площадь поверхности раздела фаз. [c.158]

    Стандартным состоянием газообразных веществ является состояние гипотетического идеального газа, фугитивность (летучесть) которого равна единице, а энтальпия равна энтальпии реального газа при той же температуре и давлении, стремящемся к нулю. За стандартное состояние растворов принимается состояние гипотетического идеального раствора, для которого парциальная мольная энтальпия и теплоемкость растворенного вещества те же, что и для реального бесконечнр разбавленного раствора, а энтропия и энергия Гиббса те же. что и раствора с моляльностью, равной единице [c.64]

    Термодинамически самопроизвольное растворение высокомолекулярных соединений сопровождается уменьшением энергии Гиббса (AG = АН — TAS < 0). Энтальпия смешения АН отражает энергетические изменения при взаимодёйствии молекул полимера и растворителя, энтропия смешения AS— изменения во взаимном расположении макромолекул и их конформациях. При растворении полимеров с гибкими цепями выделение теплоты обычно невелико (АН 0), но при растворении существенно возрастает энтропия системы (AS >0). При растворении полимеров с жесткими, обычно полярными, цепями число возможных конформаций в растворе резко уменьшается и величины энтропии смешения очень невелики. Одновременно для этих полимеров возрастает выделение теплоты. [c.439]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    При растворении в воде поверхностно-активные вещества (ПАВ) накапливаются в поверхностном слое поверхностно-инактивные вещества (ПИВ), наоборот, концентрируются в объеме раствора. И в том, и в другом случае распределение вещества между поверхностным слоем и внутренним объемом подчиняется принципу минимума энергии Гиббса на поверхности оказывается то вещество, которое обеспечивает наименьщее поверхностное натяжение, возможное при данных условиях. В первом случае это молекулы ПАВ, во втором — молекулы растворителя (воды). Происходит адсорбция. [c.329]

    Однако на самом деле при растворении полимера обычно АЯсм =0 и АУсмт О. В свою очередь, наличие взаимодействия между компонентами приводит к их взаимной координации, и энтропия смешения в такой системе отличается от А5см, комб. Для получения выражения для изменения энергии Гиббса при образовании реального раствора полимера, т. е. с учетом указанных факторов, используют выражение для АО см атермического раствора, в которое вводят дополнительный член, содержащий некоторый безразмерный параметр [c.85]


Смотреть страницы где упоминается термин Растворение Энергия Гиббса: [c.452]    [c.161]    [c.11]    [c.234]    [c.452]    [c.195]    [c.83]    [c.250]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса энергия

Гиббсит

Энергия Гиббса Гиббса энергия



© 2024 chem21.info Реклама на сайте