Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия при растворении веществ

Рис. 18-13. Понижение температуры замерзания раствора, а-равновесие между жидкостью и кристаллическим веществом б-добавление растворенного вещества (цветные кружочки) при этом равновесие смещается в сторону растворе- Рис. 18-13. <a href="/info/291874">Понижение температуры замерзания раствора</a>, а-<a href="/info/333236">равновесие между жидкостью</a> и <a href="/info/49884">кристаллическим веществом</a> б-<a href="/info/782701">добавление растворенного</a> вещества (цветные кружочки) при <a href="/info/420985">этом равновесие</a> смещается в сторону растворе-

    По коэффициенту распределения можно определить степень ассоциации или диссоциации растворенного вещества в том или ином растворителе, константы равновесия реакции, ирогекающей в одной из фаз, активности растворень[ых веществ и другие подобные величины. Закон распределения широко используется при экстрагировании вещества из раствора. [c.213]

    Соотношение (2.30) между стандартным изменением энергии Гиббса процесса и константой его равновесия является универсальным. Оно применимо к любому равновесию - к диссоциации электролита в растворе (см разд. 6.5), к равновесию между кипящей жидкостью и сухим насыщенным паром (в этом случае величина К равна давлению пара прн данной температуре), к равновесию растворенное вещество - насыщенный раствор (величина К равна концентрации вещества в насыщенном растворе, т. е. растворимости). Сочетание уравнений (2,30) и (2.27) позволяет найти константу равновесия окислительно-восстановительной реакции по эдс гальванического элемента, действие которого основано на этой реакции. Из (2.30) следует, что АС <0 отвечает К>. Это означает, что в равновесной смеси преобладают продукты реакции и при больших положительных значениях К реакция идет практически до конца. Наоборот, если АС >0, то в равновесной смеси преобладают исходные вещества (/С<1), т. е. реакция практически не идет. Если же АС - О, то ЛГ - I и реакция одинаково проходит как в прямом, так и в обратном направлении. Например, при 25 С для реакции [c.210]

    Равновесие растворенного вещества между двумя несмешивающимися растворителями характеризуется равенством его химических потенциалов в обеих фазах. Выражая химические потенциалы растворенного вешества в обоих растворителях через активности из уравнения (VI, 50), получим [c.223]

    Следует подчеркнуть, что соотношение между стандартным изменением энергии Гиббса процесса и константой его равновесия является универсальным. Оно применимо к любому равновесию — и к диссоциации электролита в растворе (см. раздел IV, гл. IV), и к равновесию между кипящей жидкостью и сухим насыщенным паром К — давление пара при данной температуре), и к равновесию растворенное вещество — насыщенный раствор (К = С с)-Сочетание уравнений (11.20) и (П.15) позволяет найти константу равновесия и в электрохимическом процессе. [c.76]

    Эффективность колонки измеряют числом теоретических тарелок. В процессе разделения, осуществляемого в виде отдельных ступеней, как, например, при противоточной экстракции, на каждой ступени устанавливается полное равновесие растворенных веществ между двумя фазами, после чего фазы разделяются. Каждую ступень называют теоретической тарелкой. Однако в хроматографической колонке растворенное вещество непрерывно движется вниз вдоль колонки, и полное равновесие не может установиться ни в одной точке. Следовательно, можно только рассчитать высоту колонки, которая будет давать разделение эквивалентно одной теоретической тарелке. Эту величину называют высотой, эквивалентной теоретической тарелке (ВЭТТ). Число теоретических тарелок в газо-хроматографической колонке зависит от ряда факторов, включающих скорость диффузии растворенного вещества в двух фазах, равномерность набивки колонки, толщину слоя неподвижной жидкой фазы, а также природу и скорость потока подвижной фазы. Число теоретических тарелок можно повысить в определенных пределах, увеличивая длину колонки, и оно несколько уменьшается при увеличении диаметра. [c.23]


    Равновесие некоторых химических реакций (диссоциация на ионы в электролитах, ассоциация молекул, комплексообразование и др.) в растворах можно изучить, исследуя распределение растворенного вещества между двумя несмешивающимися растворителями. [c.288]

    В процессе разделения растворов с помощью полупроницаемых мембран через мембрану преимущественно проходит растворитель. При этом концентрация растворенного вещества в пограничном слое у поверхности мембраны увеличивается. Повышение концентрации происходит до тех пор, пока под действием возникающего градиента концентраций растворенного вещества между поверхностью мембраны и объемом раствора не установится динамическое равновесие. [c.170]

    Как и у индивидуальных жидкостей, в жидких растворах тепловое движение частиц представляет собой колебания около временных положений равновесия в комплексах и скачкообразные перемещения из данного комплекса в соседний. Это скачкообразное перемещение частиц сближает жидкие и газовые растворы (физические смеси) и обусловливает диффузию, благодаря чему создается и поддерживается одинаковая концентрация растворенного вещества во сем объеме раствора. Обычно растворенное вещество распределя- [c.130]

Рис. 16-7. Размывание хроматографической зоны вследствие медленного установления- равновесия растворенного вещества между подвижной (а, а ) и стационарной (б, б ) фазами и результирующий профиль зон (в). Рис. 16-7. <a href="/info/429590">Размывание хроматографической зоны</a> вследствие медленного установления- равновесия растворенного вещества <a href="/info/1458623">между подвижной</a> (а, а ) и стационарной (б, б ) фазами и результирующий профиль зон (в).
    I В настоящее время почти не вызывает сомнения тот факт, что значение времени удержания растворенных веществ соответствует равновесию растворенное вещество—растворитель. Это равновесие можно определить с большей степенью воспроизводимости, если соблюдать некоторые гарантирующие условия при проведении эксперимента (например, обеспечить достаточно высокую температуру в период введения пробы) и если результаты опытов можно экстраполировать к условиям незагруженной колонки. [c.23]

    Экстракция в жидких системах приобретает все большее значение в химической технологии. Применяются жидкости с возможно меньшей взаимной растворимостью, и только в этом случае достигается идеальное равновесие растворенного вещества в растворителях. Плотность жидкостей следует [c.77]

    В случаях, когда рассматриваемая система состоит из компонентов, характеризующихся достаточно слабой взаимной растворимостью, условия парожидкого равновесия могут быть рассчитаны по законам разбавленных растворов, так как при малых значениях составов растворенных веществ эти законы выдерживаются с приемлемой практической точностью. [c.155]

    Исключения будут только для случаев заметного взаимодействия между частицами растворенного вещества или между растворителем и частицами одного или большего числа растворенных веществ. В обоих этих случаях, однако, на наличие взаимодействия будут указывать как выделение энергии, так и очень сильное отрицательное отклонение от закона Рауля для растворенного вещества энергия его испарения будет больше. Соответственно с этим будет наблюдаться компенсирующее падение эффективного свободного объема растворенного вещества. Так как энергетический член находится в экспоненте, он будет оказывать преобладающее влияние. В результате равновесие окажется сдвинутым в сторону образования более сильно сольватированных частиц. [c.435]

    А. В. Писаржевский показал (1912), что для ионных реакций обмена в Смешанных растворителях (смеси воды со спиртами, глицерином, гликолем) величины изобарных потенциалов реакции меняются с изменением растворителя вплоть до перемены знака. Ни внутреннее трение, ни электролитическая диссоциация, ни растворимость не объясняют полностью влияния растворителя на положение равновесия. Основную роль для ионных равновесий в различных растворителях играет взаимодействие с растворителем растворенных веществ, диссоциирующих ва ионы (сольватация ионов). [c.287]

    Диссоциация растворенных веществ на ионы подчиняется тем же законам химического равновесия, что и другие реакции. Наличие зарядов у образовавшихся ионов конечно не отражается на применимости первого и второго законов термодина-шшш и всех следующих из них выводов. [c.459]

    Особый вид электрохимического равновесия между двумя жидкими фазами (электролитами), разделенными мембраной, может возникнуть в тех случаях, когда мембрана непроницаема для некоторых из ионов, на которые диссоциируют растворенные вещества. Так, многие мембраны непроницаемы для больших органических ионов, например для ионов кислот с большим молекулярным весом. Равновесия этого типа могут характеризоваться как разностью электрических потенциалов, так и разностью гидростатических давлений по обе стороны мембраны. Подобные равновесия называются мембранными .  [c.570]


    Растворение большинства твердых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом СОСТОЯНИЙ и его насыщенным раствором [c.218]

    Раствор, концентрация которого такова, что он может находиться в равновесии с осадком растворенного вещества при данной температуре [c.546]

    По-видимому, в общем справедливо, что реакции, заключающиеся в простом переносе иона водорода между молекулами растворенного вещества и растворителя или другого растворенного вещества, являются достаточно быстрыми, чтобы считаться мгновенными в используемом в книге смысле. Например, вне зависимости от протекания других реакций, всегда можно ожидать, что в растворах будут поддерживаться следующие равновесия  [c.259]

Рис. 18-12. Влияние растворенного вещества на положение кривой равновесия жидкость-пар для растворителя. При каждой температуре давление пара уменьшается и составляет Рис. 18-12. <a href="/info/1668625">Влияние растворенного</a> вещества на положение <a href="/info/13763">кривой равновесия жидкость</a>-пар для растворителя. При каждой <a href="/info/841633">температуре давление пара</a> уменьшается и составляет
    Соотношение (3.89) соблюдается только для неупорядоченной фазы раствора внедрения при малых концентрациях растворенного вещества. При температурах ниже критической линия изотермы имеет более сложный вид (см. рис. 3.15), определяемый зависимостью константы распределения от состава и субструктуры раствора. Следует обратить внимание на то, что достижение равновесия при низких температурах лимитируется стадией диссоциации на поверхности мембраны. [c.116]

    Метод обратного осмоса заключается в фильтровании растворов под давлением через полупроницаемые мембраны, пропускающие растворитель и полностью или частично задерживающие молекулы либо ионы растворенных веществ. В основе описываемого способа лежит явление осмоса — самопроизвольного перехода растворителя через полупроницаемую перегородку в раствор (рис. 0-2,а). Давление, при котором наступает равновесие (рис. 0-2,6), называется осмотическим. Если со стороны раствора приложить давление, превышающее осмотическое (рис. 0-2, в), то перенос растворителя будет осуществляться в обратном направлении, что отразилось в названии процесса обратный осмос . [c.15]

    Таким образом, седиментационное равновесие растворенного вещества в центробежном поле при упомянутых условиях аналогично седиментацнонному равновесию идеального газа в поле тяготения, определяемому по уравнению [c.282]

    В свое время микротомный метод явился вершиной экспериментальной техники, и полученные с его помощью результаты дали ответ не на один важный вопрос. Этот метод, однако, нельзя отнести к обычным методам определения поверхностных избытков, и, кроаде того, по результатам измерений поверхностного натяжения во многих случаях трудно получить достоверные значения т. Действительно, если в системе нельзя исключить присутствие загрязнений, отличающихся высокой поверхностной активностью, если в результате гидролитического или другого равновесия растворенное вещество может существовать в нескольких формах, а также если рассматриваются ионные поверхностно-активные вещества, усложняющие электрическую структуру поверхностного слоя, интерпретация данных по поверхностным цатяжениям может быть чрезвычайно затр днена. [c.69]

    Рассмотргм тот случай, когда равновесие растворенного вещества в теле пенки устанавливается благодаря диффузии [c.99]

    Мак-Фетерс и Стюарт измерили такой важный параметр, характеризующий ячейку, как скорость установления в ней равновесия растворенных веществ. Как показано на рис. 11.2, при использовании микрофильтрационных мембран равновесие рас- [c.294]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    На первой ступени адсорбента концентрация растворенного вещества в первой бесконечно малой порции раствора, объем которой уменьшается с Со до (первый индекс относится к номеру ступени, а второй — к номеру объемной порции раствора, находящейся в соприкосновении с этой ступенью). Затем раствор с концентрацией поступает на вторую ступень, где концентрация уменьшается до с , и так далее, пока через несколько ступеней концентрация не снизится до пуля. Когда порция поступает па вторую ступень, порция (концентрация с ) поступает на первую ступень после достижения равновесия на этой ступени ее кон-центран,ия становится ра] ной 2, причем потому что первая [c.154]

    Допуская, что во все моменты времепп равновесие достигается мгновенно, и принебрегая влиянием диффузии, Де Вольт [6] и Вейс [47] независимо друг от друга вывели уравнения для расчета режима адсорбции одного растворенного вещества в адсорбционной колонне. Скорость движения фронта адсорбции, отнесенная к единице объема,, дается уравнением [c.155]

    Путем измерения коэффициентов распределения можно определять актив-ностк растворенного вещества. Для этого приготовляют ряд растворов с различным содержанием исследуемого вещества в системе из двух несмешивающихся растворителей—одного, в котором нужно найти активность растворенного вещества, и второго, в котором эти активности известны при разных концентрациях. После установления равновесия измеряют концентрации Хз и х1 растворенного вещества в каждой из обеих фаз всех приготовленных растворов. [c.218]

    Если между двумя растворителями распределяется диссоциирующее на ионы вещество, то, с одной стороны, в каждой из фаз устанавливается равновесие между молекулами и ионами, подчиняющееся закону действия масс, а с другой—устанавливается равновесие между недиссоциированными молекулами в разных фазах, подчиняющееся закону распределения [см. уравнения (VI, 40), (VI, 40а) и (VI, 406), стр. 216—217]. Отношение между аналитическими концентрациями j и рассматриваемого вещества в обеих фазах подобных систем не остаетсч постоянным, так как аналитические данные охватывают как недиссоцииро-ванную, так и диссоциированную части растворенного вещества, доля же диссоциированной части связана различным образом с общим количеством вещества в каждой из фаз. [c.288]

    Отклонения от закона распределения наблюдаются при изменении состояния растворенных молекул в од1ЮЙ из фаз системы. Такими изменениями могут быть, например, диссоциация или ассоциация растворенного вещества. При этом устанавливается сложное равновесие между простыми и ассоциированными молекулами или ионами в пределах каждой фазы, а также между частицами, одинаковыми для всех фаз системы и распределенными между ними в данном соотношении. [c.212]

    Одним из растворителей является вода, причем растворенное вещество (папример, иод), плохо растворимо в воде, но достаточно хорошо р> другом растворителе. Изучение равновесия распределения иода между водой и органическим растворителем, например бензолом, производится при комнатной температуре (которую необходимо определить и заштсать) и при темпера туре вьнле комнатной на 20". [c.222]

    Когда чистая жидкость В находится в равновесии со своим паром, свободная энергия жидкого и парообразного вещества В должна быть одинаковой. Испарение и конденсация происходят с одинаковой скоростью. Если к жидкости добавляется небольшое количество нелет чего растворенного вещества А, свободная энергия или способность к испарению вещества В в растворе понижается, поскольку некоторая часть молекул раствора, достигающая поверхности раздела жидкости и газа, относится к веществу А, а не к В. Однако обратная тенденция, конденсация пара в жидкость, остается неизменной, потому что в паровой фазе отсутствуют молекулы типа А, которые могли бы помещать молекулам типа В конденсироваться. При постоянной температуре частота, с которой молекула жидкости достигает поверхности с достаточной кинетической энергией, чтобы перейти в паровую фазу, одинакова в чистом веществе Вив растворе, если считать, что раствор обладает идеальными свойствами (рис. 18-11). Однако предполагается, что растворенное вещество А является нелетучим. Поэтому не все молекулы, достигающие поверхности с указанной энергией, могут на самом деле покинуть жидкость. Если 1% молекул в растворе принадлежит к типу А, то давление пара В составит лишь 99% давления пара чистого вещества В. Это утверждение основано на законе Рауля  [c.139]


Смотреть страницы где упоминается термин Равновесия при растворении веществ: [c.153]    [c.24]    [c.24]    [c.24]    [c.215]    [c.139]    [c.142]    [c.142]    [c.146]    [c.81]    [c.116]   
Смотреть главы в:

Краткий курс физической химии -> Равновесия при растворении веществ

Краткий курс физической химии Издание 2 -> Равновесия при растворении веществ




ПОИСК





Смотрите так же термины и статьи:

Растворение вещества



© 2025 chem21.info Реклама на сайте