Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод оксиды и кислоты

    Оксид углерода Оксиды азота Оксиды серы Углеводороды Альдегиды, органические кислоты Твердые частицы  [c.21]

    Оксид углерода, оксиды азота и сероводород являются сильными ядами. Диоксид серы, находясь в воздухе, окисляется до триоксида серы, который при взаимодействии с атмосферной водой образует серную кислоту. Последняя наносит вред расте- [c.297]


    Органическая химия Соединения углерода (за исключением оксидов углерода, угольной кислоты и ее солей, карбидов и некоторых других простых соединений углерода) [c.11]

    Углерода оксид, уксусная кислота [c.622]

    Ванадий, ниобий и тантал взаимодействуют с кислородом,галогенами, азотом, водородом, углеродом и другими веществами — оксидами, кислотами и т. д. Однако химическая активность этих металлов проявляется только при высоких температурах, когда разрушается защитная пленка, делающая нх пассивными при обычных условиях. Особенно прочная пленка образуется иа поверхности тантала, который по химической стойкости не уступает платине. [c.276]

    Углерода диоксид Углерода оксид Уксусная кислота Хлор [c.233]

    Соединения углерода (за исключением некоторых наиболее простых) издавна получили название органических соединений, так как в природе они встречаются почти исключительно в организмах животных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов. В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода, угольная кислота, ее соли и другие, встречающиеся в неживой природе , получили название неорганических или минеральных веществ. [c.549]

    Имеется следующий набор веществ гидроксид калия, алюминий, серная кислота, вода, диоксид углерода, оксид меди (И), сероводород. Руководствуясь справочником, установите, какие соли можно получить при взаимодействии веществ из данного набора. [c.10]

    Оксиды углерода. Угольная кислота [c.210]

    J 11.3. Оксиды углерода. Угольная кислота [c.251]

    Органическая химия-это химия соединений углерода. Лишь несколько простейших соединений углерода, а именно оксиды углерода, угольная кислота и ее соли, являются исключениями и относятся к неорганическим соединениям. Неорганическая химия изучает все остальные элементы и их соединения. [c.304]

    Органическая химия-это химия соединений. .., исключением являются оксиды углерода, угольная кислота и ее соли. [c.307]

    Углерод (1). Свойства-аллотропные формы-активированный уголь и адсорбция-оксид углерода-диоксид углерода-угольная кислота-карбонаты-промышленное получение диоксида углерода [c.469]


    При дальнейшем нагревании древесины до 270...280°С идет разложение наименее устойчивых компонентов древесины с выделением воды, диоксида и оксида углерода, уксусной кислоты и др. Протекающие реакции эндотермичны и требуют подвода тепловой энергии. [c.354]

    В качестве катализатора обычно применяют серебро, нанесенное на пемзу ( серебро на пемзе ). Помимо указанной основной реакции в процессе окисления метанола протекают побочные реакции, приводяш,ие к получению небольших количеств метана, водорода, оксида и диоксида углерода, уксусной кислоты и др. [c.75]

    Из водных растворов щавелевая кислота кристаллизуется в виде двуводного кристаллогидрата (т. пл. 101,5°С). Она растворима в водей этаноле, но практически нерастворима в диэтиловом эфире. При нагревании с концентрированной серной кислотой она разрушается с образованием диоксида углерода, оксида углерода и воды  [c.430]

    К органическим относятся вещества, в состав которых входит углерод. Исключение составляют его простейшие соединения, например оксиды углерода, угольная кислота, ее соли, которые по свойствам близки к неорганическим веществам. Наряду с углеродом в состав органических соединений входят водород, кислород и азот, реже — сера и фосфор, галогены и некоторые металлы (порознь или в различных комбинациях). [c.238]

    Элемент, оксиды которого бывают не только бурыми , но и веселящими (4). 2. Светящийся элемент (6). 3. В переводе с древнеиндийского она желтая (4). 4. Он обязательно содержится в оксидах (8). 5. И хлор, и иод, и углерод, и кремний (8). 6. Она дала имя элементу номер 34 (4). 7. Один из элементов-халькогенов (6). 8. Углекислый, угарный, сернистый. .. (3). 9. Потеря атомом электронов (9). 10. Кислотный оксид +. .. = кислота (4). [c.61]

    В переводе с древнеиндийского она желтая (4) 4 Он обязательно содер жится в оксидах (8) 5 И хлор, и иод, и углерод, и кремний (8) 6 Она дала имя элементу номер 34 (4) 7 Один из элементов-халькогенов (6) 8 Углекислый, угарный, сернистый (3) 9 По терн атомом электронов (9) 10 Кис лотный оксид + = кислота (4) [c.61]

    При разработке мер по сокращению отдельных выбросов на практике часто прибегают к их сжиганию. На НПЗ, например, сжигают отходящие газы, неорганизованные выбросы паров углеводородов, дурнопахнущие вещества, окисленный воздух от битумных установок, сероводород. При сжигании вместо одних загрязнителей появляются другие, которые могут оказаться более токсичными. Например, при сжигании углеводородов выделяются непредельные углеводороды, оксид углерода, оксиды азота, технический углерод, диоксид серы, сероводород, сероуглерод, синильная кислота и др. Следовательно, сжигать выбросы необходимо только в том случае, когда вновь образующиеся вещества менее токсичны и загрязняют атмосферный воздух меньше, чем исходные. При сжигании топлив необходимо использовать высокоэффективное оборудование, спроектированное с учетом современной теории горения топлив, которая за последние годы получила новое развитие в работах советских и зарубежных исследователей. Однако на многих НПЗ до сих пор для этих целей используют примитивные факельные устройства и печи, не обеспечивающие полного сгорания и минимального содержания вредных примесей в отходящих дымовых газах. [c.23]

    При получении формальдегида кроме основных реакций протекают побочные процессы более глубокого окисления, дегидрирования и гидрирования, ведущие к образованию оксидов углерода, муравьиной кислоты, воды и метана  [c.456]

    Углерода оксид (И) 0-120 18 Иодат калия, серная кислота [c.255]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Оксид углерода, оксиды азота и сероводород —сильные яды, сернистый ангидрид, находясь в воздухе окисляется до SO3 и при соединении с атмосферной водой образует серную кислоту, которая наносит вред растениям, подкисляет почву, ускоряет процесс коррозии металлов, разрушает каменную облн цовку зданий. Пыль и сажа, помимо раздражающего действия на слизистые оболочки и кожные покровы, снижают прозрачность атмосферы, в том числе для ультрафиолетовой радиации обладающей бактерицидными свойствами, а также препятствуют самоочищени1р атмосферы. [c.204]


    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    АЦЕТИЛЕН (этин) СН=СН - первый член гомологического ряда ацетиленовых углеводородов. Бесцветный газ, хорошо растворяется в ацетоне и хлороформе. А. открыт в 1836 г. Дэви, синтезирован в 1862 г. Бертло с угля и водорода, получен из карбида кальция в том же году Велером. В промышленности А. получают из карбида кальция, электронрекингом нли термоокислнтель-ным крекингом из метана. Смеси А, с воздухом взрывоопасны. А. чрезвычайно реакционноспособное непредельное соединение. Молекула А. имеет линейное строение. Расстояние между углеродными атомами составляет 1,20 А, углерод находится в молекуле А, в третьем валентном состоянии (ер-гибридизация), атомы углерода связаны одной о- и двумя я-связями. Для А. характерны реакции присоединения галогенов, галогеноводородов, воды (в присутствии солей ртути), цианистоводородной кислоты, оксида углерода, спиртов, кислот, водорода и др. Атомы водорода в молекуле А, можно заместить щелочными металлами, медью, серебром, магнием. [c.36]

    Органическая химия — это химия соединений углерода, за исключением оксидов углерода, угольный кислоты и ее солей. Она возникла в начале XIX века, хотя органические вещества были известны очень давно. Объекты изучения органической химии — углеводороды и их производные. Сейчас известно более 3 миллионов различных органических соединений, и их количество растет с каждым днем. Органические соединения имеют большое практическое значение. Они широко используются в топливной промышленности, в производстве красителей, искусственных волокон, синтетических каучуков, пластмасс, взрывчатых веществ, инсектицидов. Благодаря успехам химии синтезированы важнейшие лекарственные препараты сульфаниламиды,. некоторые алкаллоиды, антибиотики, витамины и др. Синтез высокомолекулярных органических соединений обеспечил бурное развитие хирургии протезирования. Пластмассы широко используются в ортопедии, травматологии и др. [c.86]

    В первой половине XIX в. характеристику химического сродства атомо1В стали искать в электрохимических свойствах элементов. В самом начале века появилась электрохимическая теория, развиваемая в трудах Г. Деви (1778— 1829) и Берцелиуса. Деви считал, что химически взаимодействующие частицы при контакте -приобретают противоположные электрические заряды, которые и обусловливают связь поэтому между химическими и электрическими процессами существует однозначная зависимость. Согласно Берцелиусу, атомы химических элементов полярны и в сво бодном состоянии, до контакта, и поэтому можно выявить различие между электроотрицательными, у которых преобладает отрицательный полюс, и электроположительными элементами. Между собой соединяются атомы с противоположными зарядами. Электрохимическая теория стала основой для дуалистической теории строения вещества Берцелиуса, которая довольно последовательно позволила объяснить взаимодействие многих веществ — оксидов, кислот, оснований, простых веществ — между собой. Однако уже к середине века эта теория встретилась с непреодолимыми трудностями на ее основе нельзя объяснить существование молекул нз одинаковых атомов (например Нз) или замещение электроположительного водорода иа электроотрицательный хлор в соединениях углерода. И на некоторое время попытки выяснить природу химической связи были оставлены. Химики просто признавали существование такой связи, и возникаемые теории валентности опирались лишь на экспериментальные факты, т. е. были эмпирическими. [c.105]

    Однако некоторые соединения углерода (оксиды СО и СО2, угольная кислота Н2СО3, ее соли — карбонаты и гидрокарбонаты, а также ряд других веществ) изучаются в неорганической химии, поэтому существует более точное определение органической химии  [c.427]

    Оксиды углерода. Оксид углерода (П) СО — в лаборатории получают из муравьиной кислоты- в присутствии водоотнимающе го вещества (например, конц. H2SO4)  [c.177]

    Согласно этому стратегические ракетные топлива нового поколения должны иметь высокую прозрачность продуктов сгорания, для чего во время работы продуцировать как можно меньше твердых частиц (несгоревшие металлы и углерод, оксиды металлов), дымообразующих окрашенных соединений (xJюp, оксиды азота), веществ, дающих туман при соприкосновении с влагой воздуха (хлористый и фтористый водород). С точки зрения опасности для человека и других живых организмов в числе наиболее распространенных вредных продуктов сгорания, упомянутые выше углерод и его производные, избыток которых создает парниковый эффект , оксиды азота, характеризующиеся как кровяные яды, фтор, обусловливающий появление в атмосфере озоновых дыр , сильнодействующие кислые и щелочные соединения (соляная, фтористоводородная, азотная кислоты, аммиак) и множество других токсинов. [c.188]

    При обычных т-рах У. химически инертен, при достаточно высоких соединяется со мн. элементами, проявляет сильные восстановит, св-ва. Хим. активность разных форм У. убывает в ряду аморфный У., фафит, алмаз, на воздухе они воспламеняются при т-рах соотв. выше 300-500 °С, 600-700 °С и 850-1000 °С. Продукты горения - углерода оксид СО и диок-свд СО2. Известны также неустойчивый оксвд С3О2 (т. пл. -111 °С, т. кип. 7 °С) и нек-рые др. оксвды. Графит и аморфный У. начинают реагировать с Н2 при 1200 С, с Р2 - соотв. выше 900 °С и при комнатной т-ре. Графит с галогенами, щелочными металлами и др. в-вами образует соединения включения (см. Графита соединения). При пропускании электрич. разряда между угольными электродами в среде N2 образуется циан, при высоких т-рах взаимодействием У. со смесью Н2 и N2 получают синильную кислоту. С серой У. дает сероуглерод С5р известны также С8 и С большинством металлов, В и 81 У. образует карбиды. Важна в пром-сти р-ция [c.26]

    Например, за год эксплуатации котельного агрегата мощностью 500 МВт (на угле с содержанием серы 1 %) из содержащихся в дымовых газах окислов может быть получено 122,5 тыс. т серной и 20,5 тыс. т азотной кислот. Поэтому целесообразно интефирова-ние парогазовых установок с афегатами газификации угля и утилизации из дымовых газов оксидов серы, азота, углерода в кислоты и минеральные удобрения. [c.202]

    ПортландцвьЕнтшй клинкер и технологический газ чаще всего получают во вращающихся печах. Добавками служат различные материалы, содержащие углерод, оксиды алюминия, кремния и железа, которые часто являются попутными продуктами химических и иных производств (кокс, магнетит, П1фитные огарки, золы, глины). Кальцинированный фосфогипс и добавки измельчают, смешивают в определенных пропорциях и обжигают. Готовый клинкер охлаждают воздухом и измельчают. Газ из П0ЧИ, состоящий из 5 , , 4 > и водяного пара, очищают от шиш в циклонах, электрофильтрах и скруббере. Влажный газ после мокрых электрофильтров осушают и подают в контактный аппарат о ванадиевым катализатором, а затем в абсорбционное отделение, где завершается цикл производства серной кислоты. На установке производительностью 1000 т/сут расходные коэффициенты на 1 т серной кислоты составляют Са 01 - 1,611 т глина - 0,144 т песок - 0,080 т кокс - 0,115 т вода - 85 м электроэнергия - 140 кВт/ч топливо - 63 МДж /Вэ/. Клинкерные щ-нералы образуются при температуре на 50 - 70 °С ниже, чем обычно, что объясняется к аталитическим влиянием восстановительной среди и наличием соединений фосфора и фтора. Клинкер отличается пористой структурой и легче размалывается /ВО/. [c.22]

    Следовательно, поведение удобрений в процессе высуши вания зависит от их состава. Поскольку промышленностью вы пускается большое число смешанных удобрений различного со става, ни одну из методик высушивания в сушильном шкафу нельзя считать универсальной. Условия, необходимые для точ ного определения потери массы при высушивании образца, зави сят от состава анализируемого удобрения. Гер дести и Дэви [162] а также Шэнон [318] показали, что смеси, состоящие из супер фосфата, неорганических нитратов и органических компонентов легко разрушаются при температурах ниже 85—100 °С вследствие окисления органических веществ азотной кислотой, которая об разуется при нагревании из нитратов, первичного фосфата каль ция и воды. Такая смесь после нагревания при 85—100 °С в тече ние 2 ч теряет 6—7 % диоксида углерода, оксидов азота и консти туционной воды. При температуре ниже 85 °С наблюдается незна читальная потеря массы. Высушивание в токе воздуха, нагретого до 60 °С, и длительное высушивание в вакуум-эксикаторе (48 ч 25—30 °(3, 8-10 Па) дают сравнимые результаты [163, 173]. Ана лизируемый образец помещают в пористый стеклянный тигель через который может проходить нагретый до 60 °С воздух. Ниже представлены результаты высушивания двух смешанных удобрений (в сушильном шкафу при 100 °С в токе воздуха, нагретого до 60 °С, и в вакуум-эксикаторе (потеря массы в %)  [c.122]

    Углерода оксид и пыль цементного производства Уксусная кислота и уксусный ангидрид Уксусная кислота, фенол, этилацетат Фурфурол, метиловый и этиловый спирты Циклогексан и бензол Этилен, пропилен, бутилен и пентилен [c.1098]

    Сущность метода. Определение смол и асфальтенов основано на их экстракции из воды тетрахлоридом углерода, хроматографическом отделении их от углеводородов в тонком слое оксида алюминия в системе растворителей н-гексан — тетрахлорид углерода — уксусная кислота (70 30 2), извлечении из оксида алюминия хлороформом и измерении интенсивности люминесценции полученных растворов при Хлюм = 500—550 нм и Явозб = 460—480 нм. [c.317]

    Адсорбция кислот с длинной цепью на поверхности раздела тетрахлорид углерода — оксид алюминия приводит к плотной упаковке молекул кислоты перпендикулярно поверхности таким образом, что алкильные цепи закрыты, а снаружи находятся лишь терминальные метильные группы. Свободнорадикальное хлорирование в этих условиях резко повышает выход продуктов хлорирования концевой метильнбй группы [265]. Результат, сходный с хлорированием аминов по Гофману-Лефлеру, наблюдался при свободнорадикальном хлорировании кислот с длинной цепью в сильнокислой среде. Этот процесс, являющийся результатом перегруппировки МакЛафферти в растворе схема (137) объясняют [266] образованием кислородных катион-радикалов. В случае гексановои и октановой кислот помимо избирательного хлорирования по С-4, получаются сравнимые количества продуктов терминального хлорирования. Радикальное хлорирование высших кислот и их сложных эфиров, инициируемое катион-радикалом азота [267, 268], проходит с высокой селективностью по и — 1-положению, причем почти исключительно получается продукт монохлорирования.  [c.57]

    Щелочные и щелочноземельные металлы являются сильнейшими восстановителями. К числу других восстановителей относятся водород, углерод, оксид углерода СО, сероводород НгЗ, диоксид серы ЗОг, сернистая кислота НгЗОз и ее соли, галогеноводороды (кроме фтористого водорода), хлорид олова (II) ЗпСЬ, сульфат железа (II) Ре304. [c.98]


Смотреть страницы где упоминается термин Углерод оксиды и кислоты: [c.475]    [c.369]    [c.36]    [c.34]    [c.164]    [c.665]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.321 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Оксиды углерода. Угольная кислота

Синтез карбоновых кислот и их производных на основе оксида углерода

Углерод, его аллотропные формы, химические свойства Оксиды углерода (II) и (IV), их химические свойства Угольная кислота и ее соли

Углерода оксиды

Угольная кислота . 16.1.5. Оксид углерода (II) . 16.1.6. Соединения углерода с серой и азотом Кремний

Уксусная кислота, получение синтезом из метанола и оксида углерода



© 2025 chem21.info Реклама на сайте