Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пересыщение растворов влияние

    Опишем процесс массовой кристаллизации из растворов и газовой фазы с учетом контактного вторичного зародышеобразования. Контактное зародышеобразование [30, 33, 38—41] осуществляется посредством маточных кристаллов, если они сталкиваются с другой поверхностью, которой может быть поверхность других кристаллов или стенок кристаллизатора и мешалки. Контактное зародышеобразование вызывает у исследователей значительный интерес, так как вклад его в образование кристаллов наибольший среди всех других видов зародышеобразования [35, 33, 39]. В опубликованных исследованиях для этого типа зародышеобразования контакт достигался или скольжением кристалла вдоль наклонной стеклянной поверхности, погруженной в пересыщенный раствор того же самого вещества [30], или столкновением с мешалкой, или же контрольным ударным контактом между кристаллической затравкой и прутком, сделанными из различных материалов [33, 40]. Существует непосредственная корреляция между числом образовавшихся зародышей и энергией удара при постоянной площади соприкосновения. Авторы работ [33, 42] отмечают сильную зависимость скорости контактного зародышеобразования от пересыщения и предлагают объяснение этого механизма новые центры образуются в жидкой фазе около кристалла или происходят из затравочного кристалла в результате истирания при соударении, при котором от поверхности кристалла откалываются маленькие кусочки, но выживают и получают право на дальнейший рост только те, размер которых больше критического для данного пересыщения. Изучению влияния на контактное зародышеобразование размеров затравочных кристаллов и интенсивности перемешивания посвящены работы [40, 43]. [c.47]


    На скорость кристаллизации оказывает влияние ряд факторов степень пересыщения раствора, его температура, образование зародышей кристаллов, интенсивность перемешивания, наличие примесей и др. [c.634]

    Температура кристаллизации в общем оказывает положительное влияние на скорость роста кристаллов. При более высокой температуре сни-жаетсй вязкость раствора и, следовательно, облегчается диффузия. Однако в большей степени влияние температуры отражается на увеличении числа зародышей, что, как известно, приводит к образованию более мелких кристаллов. При положительной растворимости с повышением температуры кристаллизации уменьшается степень пересыщения раствора, что, в свою очередь, вызывает снижение движущей силы процесса. [c.636]

    Размер кристаллов. Более крупные кристаллы получаются при медленном их росте и наибольших степенях пересыщения раствора. Существенное влияние на размер кристаллов оказывает перемешивание раствора. С одной стороны, интенсивное движение раствора облегчает диффузионный перенос вещества к граням кристаллов, способствуя их росту, с другой стороны, вызывает образование зародышей, т. е. накопление мелких кристаллов. Таким образом, перемешивание раствора порождает два противоположных явления. Нахождение оптимальной скорости движения раствора, определяющей желаемое соотношение между производительностью кристаллизатора и требуемыми размерами кристаллов, является одной из важнейших задач рациональной организации процесса массовой кристаллизации. Для ряда кристаллизуемых веществ эти соотношения найдены экспериментально. [c.636]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]


    Выше было упомянуто, что скорость осаждения также влияет на чистоту осадка, но является фактором, подчиненным предыдущему, т. е. влиянию избытка одного из ионов. Так, например, известно, что при осаждении сульфат-иона хлористым барием происходит соосаждение ионов хлора, содержащихся в растворе ВаС - Если хлористый барий прибавить сразу в достаточном избытке, то значительная часть осадка сернокислого бария будет кристаллизоваться из пересыщенного раствора в среде, содержащей избыток катионов бария. Как было отмечено, такие условия способствуют более сильному поглощению анионов. Если же раствор хлористого бария медленно, по каплям, приливать к раствору серной кислоты, то создаются совершенно другие условия кристаллизации. Большая часть кристаллов [c.66]

    Оба метода могут применяться для различных определений, основанных на реакциях осаждения. В обоих рассматриваемых случаях серьезные трудности связаны с образованием пересыщенных растворов, а также влиянием электролитов на величину зерна осадка. [c.441]

    Уравнение (259) описывает влияние различных факторов на процесс осаждения. Число зародышей растет с увеличением пересыщения раствора и уменьшением растворимости осадка. Для получения крупнокристаллических, хорошо фильтруемых осадков пересыщение должно быть мало. Поэтому осадитель нужно добавлять медленно. Кроме того, осаждение проводят при нагревании до температуры кипения, при этом значение Ь увеличивается и скорость зародышеобразования становится еще меньше. [c.200]

    Образование раствора из компонентов — процесс самопроизвольный, в котором, как и в любом самопроизвольном процессе, протекающем в открытой системе, находящейся под влиянием двух внешних факторов Р и Т), AG < 0. Следовательно, термодинамическим условием образования раствора является убыль энергии Гиббса. Такой процесс будет протекать самопроизвольно до тех пор, пока в системе не установится равновесие растворяемый компонент (т., ж., г.) растворяемый компонент (раствор). При равновесии AG = = 0. Исключение составляют термодинамически неустойчивые пересыщенные растворы. С точки зрения термодинамики раствор называется насыщенным, когда химический потенциал чистого растворяемого вещества (твердого, жидкого или газообразного) равен химическому потенциалу этого вещества в растворе. [c.340]

    Реагирующая смесь термостатируется путем подачи воды во внешнюю рубашку реактора из ультратермостата. Раствор в ходе реакции следует интенсивно перемешивать с помощью встряхивателя или поворачивая реактор из стороны в сторону. Тем самым уменьшается влияние диффузии на кинетику реакции, и эффект пересыщения раствора кислородом. [c.802]

    Ранее отмечено, что при отсутствии химических взаимодействий между частицами, образующими раствор, вполне применимо правило аддитивности при расчете его свойств. Химические взаимодействия осложняют методику расчета свойств раствора. При этом наиболее трудно пока оценивать влияние химических взаимодействий для бесконечно разбавленного и пересыщенного растворов. Однако это становится возможным, если сравниваются вещество или группа веществ в растворенном состоянии при изменении от малых значений [c.117]

    При изотермической кристаллизации без удаления растворителя по мере возникновения и роста кристаллов их общая поверхность увеличивается, а пересыщение раствора уменьшается. Первое обстоятельство ускоряет кристаллизацию, а второе — замедляет. Совместное, но противоположное влияние этих факторов приводит к тому, что скорость кристаллизации сначала резко возрастает, достигает некоторого максимума и затем быстро уменьшается (рис. 9.9). Общий выход кристаллов небольшой, так как определяется лишь начальной степенью пересыщения. [c.252]

    Помимо введения затравки , кристаллизацию пересыщенного раствора часто удается вызвать трением стеклянной палочки о стенки содержащего его сосуда. Действие трения сводится, по-видимому, к тому, что одна из отщепляющихся мельчайших крупинок стекла, подходящая по форме к данному кристаллу, становится первоначальным центром кристаллизации. Вероятно, этим же объясняются довольно часто наблюдающиеся случаи кристаллизации пересыщенных растворов под влиянием попадающих в них из воздуха частичек пыли. [c.127]

    Действительно, концентрация насыщения раствора при неизменной дисперсности минерала (влияние упругой деформации на поверхностную энергию пренебрежимо мало) зависит только от температуры, и кратковременное пересыщение в прилегающем тонком слое раствора, вызванное приложенным напряжением вследствие увеличения химического потенциала кристалла, приводит к немедленному обратному осаждению всей растворившейся твердой фазы в виде осадка с ненапряженной решеткой (эпитаксия скажется только на первых моноатомных слоях, что имеет значение для равновесного потенциала металла и скорости растворения минерала в ненасыщенном растворе, но несущественно для минерала в пересыщенном растворе в связи с быстрым образованием толстого слоя осадка). В результате на поверхности кристалла, покрытого этим осадком, восстановится прежнее фазовое равновесие, и влияние напряжений не удастся зафиксировать. Поэтому механохимическое растворение минералов следует изучать в растворах, далеких от насыщения, используя нестационарные кинетические методы. [c.35]


    Влияние пересыщения раствора [c.104]

    Как правило, растворимость большинства веществ с повышением температуры увеличивается. При понижении температуры такие растворы становятся пересыщенными и переходят в состояние неустойчивого равновесия, продолжительность которого определяется степенью отклонения от равновесия, свойствами растворенного вещества и растворителя. Переход из неравновесного состояния в равновесное сопровождается выпадением кристаллов, т.е. возникновением процесса кристаллизации. На величину предельного (максимального) пересыщения оказывают влияние свойства [c.292]

    При высоких степенях пересыщения раствора существует обратная зависимость, и получаются мелкие кристаллы (образование кристаллов опережает их рост). Поэтому на 1-й ступени кристаллизации размер кристаллов всегда меньше, чем на 2-й. На размер кристаллов оказывает влияние также длительность пребывания сырья в кристаллизаторе при более длительном — размер кристаллов увеличивается. Кроме того, средний размер кристаллов определяется также типом кристаллизационного оборудования, интенсивностью перемешивания раствора, температурным градиентом, вязкостью жидкой фазы и другими параметрами. Влияние этих факторов практически не изучено. Опыт промышленной эксплуатации показывает, что на 1-й ступени при применении скребковых кристаллизаторов средний размер кристаллов составляет 0,07-0,1мм. На 2-й ступени кристаллизации он больше и составляет 0,2 мм. В результате охлаждения исходной гомогенной смеси в кристаллизаторах получают две фазы жидкую и твердую, которые разделяют на специальных аппаратах. В производстве обычно используют центрифуги и в некоторых случаях вакуум-фильтры. [c.171]

    Процесс кристаллизации в существенной степени зависит от двух факторов от скорости кристаллизации и от числа зародышей кристаллизации, причем оба фактора сложным образом зависят от температуры при переохлаждении (т. е. от пересыщения). В сильно пересыщенных растворах число зародышей кристаллизации велико, вследствие чего происходит образование множества мелких кристаллов. В тех случаях, когда раствор пересыщен лишь в незначительной степени, процесс определяется скоростью кристаллизации. В этих условиях образуется лишь незначительное число кристаллов, которые зато отличаются крупными размерами. Мнение, что особенно красиво образованные кристаллы отличаются и высокой степенью чистоты, неверно, так как их загрязнение может быть обусловлено включениями маточного раствора. На чистоту кристалла также оказывают влияние образование смешанных кристаллов, адсорбция примесей на гранях и ребрах и на границах зерен. Вкратце остановимся на получении более крупных кристаллов, имеющем важное значение для кристаллографии. [c.133]

    На скорость роста, совершенство формы и размеры кристаллов, кроме физико-химических свойств кристаллизующегося вещества, оказывают большое влияние степень и скорость пересыщения раствора, интенсивность его перемешивания, наличие растворимых примесей и температура кристаллизации. [c.687]

    В большинстве работ, посвященных исследованию диффузионного роста газового пузырька в пересыщенном растворе, коэффициент поверхностного натяжения Е принимается постоянным и количество газа, поступающего в пузырек, определяется диффузионным потоком растворенного в жидкости газа на поверхности пузырька. В действительности в растворе, например в природной углеводородной смеси, всегда присутствуют ПАВ, которые, адсорбируясь на межфазной поверхности, с одной стороны, уменьшают Е, а с другой — препятствуют переходу растворенного вещества из раствора в пузырек. Влияние ПАВ на величину Е известно [4], а влияние ПАВ на переход газа из растворенного состояния в газообразное изучено слабо. [c.576]

    Уже около 200 лет тому назад Т. Е. Ловицем было замечено, что внесение в пересыщенный раствор кристалла того же вещества приводит к немедленной кристаллизации, в то время как кристаллы других веществ такого влияния не оказывают. [c.363]

    Влияние концентрации. Выпадению осадка предшествует пересыщение раствора. В пересыщенном растворе образуются зародыши кристаллов осаждаемого вещества, которые по мере созревания осадка увеличиваются в размерах. Скорость образования этих зародышей и их количество зави- [c.280]

    И. В. Коршунов и Ю. С. Поликарпов [32] сделали попытку экспериментально изучить влияние ультразвука на соосаждение микропримеси при кристаллизации макрокомпонента из пересыщенного раствора. Результаты опытов показывают, что при облучении ультразвуком пересыщенного раствора коэффициент О близок к значению, полученному методом изотермического снятия пересыщения при перемешивании, но истинное равновесие между твердой и жидкой фазами устанавливается не в течение нескольких десятков часов, а нескольких минут. Авторы объясняют роль ультразвука в ускорении достижения равновесия в искусственном диспергировании твердой фазы. [c.7]

    Кинетика процесса кристаллизации. Скорость кристаллизации определяется рядом факторов, среди которых степень пересыщения раствора, температура, интенсивность перемешивания, наличие поверхностей, примеси и др. Указанные факторы влияют на механизм протекания процесса. Сложность учета влияния различных факторов заключается в том, что процесс возникновения кристаллических зародышей и рост иэ них кристаллов протекают одновременно. [c.345]

    Полученные результаты хорошо согласуются с данными ранее проведенного исследования и Объясняются тем, что пересыщение раствора и интенсивность его движения являются теми факторами, которые оказывают основное влияние на скорость образования зародышей и скорость их роста, а следовательно, и на гранулометрический состав получаемого продукта. [c.218]

    Добавление в раствор кристаллов в большем количестве (Р >5%) приводит к тому, что средний размер частиц в продукте уже практически не зависит от темпов охлаждения раствора и оказывается больше его значения по сравнению с кристаллизацией без затравки. Причем средний размер получаемых кристаллов оказывается довольно близким к его значению для затравочных кристаллов. Это объясняется тем, что присутствие в растворе сильно развитой кристаллической поверхности способствует быстрому снятию пересыщения уже в момент его возникновения частично на рост затравочных кристаллов, а главным образом на образование новых центров кристаллизации 20-22] увеличении интенсивности охлаждения, а следовательно, и пересыщения при кристаллизации, с одной стороны, возрастает скорость роста затравочных кристаллов, а с другой — еще в большей степени увеличивается скорость образования новых зародышей. Оба фактора, по-видимому, перекрывают друг друга в интервале испытанных значений 0, поэтому изменение скорости охлаждения и связанное с этим изменение пересыщения раствора не оказывает заметного влияния па величину d,.p получаемых кристаллов. [c.219]

    Прямое диспергирование не является ни единственным, ни наиболее эффективным способом получения дисперсий. Со времен Сведберга [8] в коллоидной химии различают другой общий метод получения дисперсных систем — конденсационный метод. Мельчайшие частицы, самопроизвольно возникающие в процессе конденсации — образования новой фазы из метастабильных (пересыщенных) паров, растворов или расплавов, — при определенных условиях образуют достаточно устойчивые коллоидные дисперсии. Образование новой конденсированной фазы часто проходит через стадию капель аморфной жидкости, под влиянием поверхностного натяжения приобретающих сферическую форму. Как показали 3. Я. Берестнева и В. А. Каргин [9], из пересыщенных растворов двуокиси кремния, двуокиси титана, пятиокиси ванадия, сернистого мышьяка, металлического золота и т. д. вначале возникают аморфные сферические частицы сравнительно большого размера лишь впоследствии они распадаются на более мелкие кристаллики. Явление самопроизвольного возникновения капель новой фазы с повышенной концентрацией растворенного вещества в процессе ее образования из метастабильных растворов высокомолекулярных соединений часто принято называть коацервацией [10—13]. Во всех этих случаях конденсационный метод приводит к образованию дисперсий, состоящих из изо-метричных частиц. [c.9]

    Практическое использование взвешенного слоя позволяет решить две задачи значительно интенсифицировать процессы тепломассообмена в дисперсных системах и тем самым добиться высокой удельной производительности с единицы объема аппарата при получении крупнокристаллических продуктов обеспечить получение продукта узкого гранулометрического состава путем его классификации по высоте слоя. Кристаллизатор работает следующим образом. Пересыщенный раствор, получав мый или прямым охлаждением раствора или за счет испарения части растворителя, поступает из циркуляционной трубы в ниж нюю часть корпуса аппарата и поднимается вверх, поддерживая растущие кристаллы во взвешенном состоянии. По мере прохождения раствора через слой кристаллов происходит их рост. Часть целевого компонента из метастабильного состояния переходит в кристаллическое. Пересыщение при этом уменьшается. Маточный раствор, имеющий минимальное пересыщение, из верхней части корпуса вновь вовлекается в циркуляцию, а часть его выводится из аппарата. По мере роста кристаллы осаждаются, достигают нижней части слоя и попадают на выгрузку. Получение заданного гранулометрического состава обусловлено влиянием двух групп взаимосвязанных параметров [26—29] кинематических — скорости зародышеобразования и роста и гидродинамических — скорости движения раствора, объемного содержания дисперсных частиц, их линейных размеров. [c.191]

    Формула для расчета кристаллизационного давления учитывает многообразие условий его развития при росте кристалла в сторону препятствия Она отражает влияние вида материала ( ), размера грани кристалла - перемычки в зазоре между растущим кристаллом и препятствием (а) и степени пересыщения раствора (а) на абсолютные значения кристаляизационного давления. Если величина а), а, следовательно, и площадь контакта между новообразованием и препятствием малы, то и давление незначительно, ибо при а 10" м имеем  [c.56]

    Борьба со старением заключается главным обазом в раскислении стали алюминием, образующим очень устойчивые, нерастворимые в железе нитриды, что устраняет возможность перехода их в пересыщенный раствор. Аналогичное влияние оказывают титан, ванадий и цирконий. [c.34]

    Большое влияние на скорость разложения фосфата в начальный период ока ывает интенсивность и продолжительность перемешивания реагентов п смесителе. Интенсивное перемеиш-вание обеспечивает однородность пульпы, снижает степень пересыщения раствора в пограничном слос, что способствует об разованию более крупных кристаллов сульфата кальция и, следовательно, более проницаемых пленок на зернах фосфата. Это, в свою очередь, ускоряет разложение. Чтобы избежать затвердевания реакционной пульпы в смесителях, продолжительность перемешивания должна быть пе более 5—7 мип. [c.225]

    Влияние рециркуляции выпавшего Са50< 2НгО на устранение пересыщения раствора СаЗО при pH = 6,35, интенсивности перемешивания Не = 7250 и времени контакта 10 ман [48  [c.16]

    Для оценки влияния дополнительных межмолекулярных связей, возникающих при введении в каучук серы, на изменение газопроницаемости было предварительно проведено изучение газопроницаемости полибутадиена, содержащего растворенную, внyтpимoлeкyляpнo связанную и мостичную серу, . Полученные результаты приведены на рис. 20. Растборенная сера, концентрация пересыщенных растворов которой в полибутадиене при 20°С не превышает 2%, не оказывает существенного влияния на азотопроннцаемость каучука. Небольшое изменение проницаемости наблюдается также и в слу-> чае внутримолекулярно-связанной серы (кривая 2 — для [c.97]

    Осаждение, т. е. вьщеление одного из соединений газовой или жидкой Смеси веществ в осадок, кристаллический или аморфный, основывается на изменении условий сольватации. Сильно понизить влияние сольватации и выделить твердое вещество в чистом ввде можно несколькими методами. Первый (простейший) путь состоит в повышении концентрации вещества за счет упаривания растворителя до состояния пересыщения раствора. Тогда при охлаждении такого раствора вещество выпадает в осадок обычно в ввде микро- или макрокристаллов (кристаллизация). Чаще всего для синтеза выбирается такой растворитель, в котором хорошо растворяются (сольватируются) исходные реагенты и трудно растворяется продукт реакции. Тогда он частично или полностью выпадает из раствора в осадок. Раствор, в котором еще остался продукт реакции, может бьтть упарен. С целью максимально полного вьщеления про дукта должны быть сделаны приквдочные расчеты растворимости конечного продукта. Однако это возможно, если известно ставдартное значение его растворимости 5° и энтальпии растворения. Определение растворимости и термодинамических параметров растворения органических веществ в важнейших классах растворителей является первостепенной практической задачей. По существу синтез каждого нового соединения должен сопровождаться определением количественных параметров процесса растворения, что позволило бы оценить и снизить потери вещества. Это важно и в экономическом отношении, и в экологическом плане. [c.91]

    Исследование кинетики превращения С-центров в Л-центры под действием температуры показало, что она хорошо описывается феноменологическим уравнением Авраами, которое широко используется для описания процессов распада твердых пересыщенных растворов. Величина параметра процесса п свидетельствует о сферической форме Л-центров, или о прямоугольной и округлой формах пластин. Обращают на себя внимание более высокое значение энергии активации и низкая скорость процесса превращения С-центров в Л-центры. Причиной этого могут быть прежде всего структурные отличия исследованных алмазов. В частности, включения металла-растворителя в зависимости от их количества, размеров и распределения могут заметно видоизменять процессы диффузии примесных атомов, являясь эффективными стоками избыточных вакансий. Это влияние может усугубляться тем, что в ходе термической обработки, как показали визуальные наблюдения, идут процессы миграции и агрегации включений металла в кристалле. Впрочем, исследование процессов превращения С-центров в А-центры при 1770 К в вакууме показали также существенно более низкие скорости реакции, [c.429]

    На устойчивость некоторых метастабильных растворов оказывают влияние механические, электрические (разряд) и другие факторы. Зависимость устойчивости пересыщенных растворов от многих факторов приводит к тому, что разграничительная линия между метастабильной и лабильной областями обычно не может быть четко определена. На эту линию, как правило, влияют примеси, наличие которых в промышленной практике трудно проконтролировать. Лабильные растворы при малейших возмущениях среды образуют кристаллические зародыши, и поэтому целенаправленно регулировать процесс практически невозможно. Таким образом, управляемое вьфащивание кристаллов возможно только из метастабильных растворов (см. 17.2.3). Движущей силой процесса является пересыщение ст, определяемое как разность между концентрацией целевого компонента в несущей среде и равновесной концентрацией с, которая главным образом зависит от Г, т. е. а = с—с (Т). Пересыщение характеризует степень отклонения системы от равновесного состояния. Поскольку на практике часто создают пересыщение за счет изменения температуры раствора, то степень отклонения от равновесия можно характеризовать также величиной переохлаждения , т. е. разностью между температурой насыщеш1я f и текущей температурой кристаллизации Т. Связь пересыщения с переохлаждением АТ - Т —Т дается формулой [c.30]

    В предыдущем сообщении [ ] приводились соображения относительно характера изменения пересыщения раствора в процессе совместной кристаллизации азотнокислого калия и бихромата калия. На основании этих соображений объяснялось влияние бихромата калия на кристаллизацию KNOз. Для проверки сделанных нами ранее предположений были проведены дополнительные исследования, позволяющие установить ход изменения пересыщения раствора по отношению как к азотнокислому калию, так и к бихромату калия. Результаты этих исследований приводятся в данной работе. Кроме того, приводится вывод приближенного уравнения, связывающего степень захвата примесей с исходным составом раствора. Наличие такой связи было подтверждено экспериментально в ранее опубликованных работах в которых было установлено, [c.74]

    Почти не оказывая влияния на растворимость азотнокислого калия, двухромовокислый калий между тем в известных условиях [ ] заметно изменяет скорость его кристаллизации. Как видно из рис. 1, это влияние имеет место в том случае, когда пересыщение раствора по отношению к KNOз оказывается более или менее значительным. Оно нри прочих равных условиях зависит от соотношения скоростей кристаллизации и охлаждения [ ]. При исходной температуре 80° пересыщение через 1- 2 минуты после начала кристаллизации становится сравнительно большим. По-видимому, в этих условиях скорость охлаждения значительно превосходит скорость кристаллизации (рис. 1, 1 и 5). Когда концентрация бихромата калия в жидкой фазе невелика, пересыщение раствора по KNOз снимается быстро (рис. 1, 5). Если же содержание КдСгаО, [c.75]

    Ко второй группе следует отнести работу Ратинова, Розенберг и Забе-жинского [13], которые используют формулу Колмогорова для скорости роста кристаллов из расплавов для вычисления скорости гидратации вяжущих веществ. По-видимому, эта формула для случая образования гидрата из пересыщенного раствора может иметь лишь ограниченное применение. В частности, она не отражает влияния дисперсности и других свойств вяжущих веществ. [c.224]


Смотреть страницы где упоминается термин Пересыщение растворов влияние: [c.83]    [c.156]    [c.196]    [c.372]    [c.35]    [c.35]    [c.194]   
Промышленная кристаллизация (1969) -- [ c.0 ]

Кристаллизация из растворов в химической промышленности (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пересыщение

Пересыщение раствора, пара влияние на габитус

Пересыщение растворов раствором



© 2025 chem21.info Реклама на сайте