Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения электролизом

    Метод разделения электролизом (см. стр. 236). Некоторые элементы, присутствующие в растворе в очень малых количествах, легко отделяются осаждением их электролизом на сетчатом металлическом электроде (медь, свинец в виде РЬОг)- [c.642]

    Метод разделения электролизом с ртутным катодом. [c.715]

    Метод разделения электролизом с ртутным катодом. Так можно отделить от щелочных металлов многие элементы, отлагающиеся на ртутном катоде. [c.795]


    Метод разделения электролизом. Осаждают кобальт на катоде в виде металла (см. стр. 837) вместе с ним осаждаются медь, никель и т. п. Мешают хром (VI), хром (III) и др. [c.834]

    Метод разделения электролизом. На золотом или медном электроде можно выделить даже самые малые количества ртути. [c.960]

    Для обогащения или полного разделения изотопов применяют методы диффузии, термодиффузии, электролиза и обменные реакции. Обогащение можно также проводить с помощью методов осаждения и центрифугирования. Ректификационные методы разделения применяют для получения изотопов Не, О, В, С, N, 1 0, -Не, С1 и Аг. Обстоятельный обзор методов получе- [c.219]

    Таким образом, сероводородная очистка раствора в сочетании с обычными методами разделения кобальта, никеля и железа позволяет получать электролизом кобальт очень высокой чистоты. [c.404]

    Сходный эффект можно иногда получить, используя более простые способы, например так называемый внутренний электролиз. В основу этого метода положен принцип цементации металла из его раствора при добавлении другого металла. Отличие заключается только в том, что при разделении анодного и катодного пространств с помощью диафрагмы (как в известном элементе Даниеля) в процессе внутреннего электролиза получают прочно удерживающиеся на электродах осадки. Путем подбора подходящего металла можно добиться необходимой разности потенциалов по отношению к катоду. Однако только сравнительно небольшие количества веществ можно определять при этом за не слишком большой промежуток времени. Преимущество внутреннего электролиза заключается в том, что с анода в раствор переходит только металл и на аноде не протекают побочные процессы, такие, как выделение СЬ или реакция Ре +—иРе +-Ье- Метод внутреннего электролиза успешно применяют для определения небольших количеств благородных металлов в сплавах. [c.264]

    Методы разделения галлия и алюминия в щелочных растворах. Так как основным источником галлия в настоящее время являются оборотные растворы алюминиевого производства, большое значение имеет отыскание таких способов выделения галлия из щелочных растворов, которые не изменяли бы их состав. К сожалению, рассматриваемые далее способы химического разделения основаны на осаждении не галлия, а алюминия. Поэтому они практически могут быть только методами концентрирования галлия. При электрохимических методах (электролиз и цементация) из растворов выделяется галлий, однако для их успешного применения (в особенности электролиза) необходима достаточно значительная концентрация галлия в растворе. [c.254]


    Количественные разделения можно производить химическими или физическими методами (табл. 52). К числу химических методов относятся фракционное осаждение, соосаждение на коллекторах, применение органических реагентов-осадителей, электрохимическое разделение (электролиз на ртутном катоде и внутренний электролиз), хроматографическое разделение, например путем ионообменной хроматографии. К числу физических методов относятся экстракция при помощи органических растворителей, возгонка (сублимация), дистилляция (отгонка летучих компонентов). [c.278]

    При анализе сложных веществ применяют методы разделения элементов (ионов), основанные на осаждении, адсорбции, соосаждении, экстракции органическим растворителем, выделение электролизом, дистилляцией. [c.184]

    Преимущество метода внутреннего электролиза заключается в чрезвычайной простоте прибора, благодаря чему его можно применять даже в недостаточно оборудованных лабораториях. Известным ограничением разделения элементов методом внутреннего электролиза, как и других методов электролитического осаждения, является тот же ряд напряжений. Очевидно, методом внутреннего электролиза можно [c.232]

    Технический кислород, получаемый методом электролиза или методом разделения воздуха, имеет достаточную степень чистоты и WM можно пользоваться в лабораторной практике после соответствующей очистки. [c.103]

    Но, как уже отмечалось, ионы большинства металлов при пропускании постоянного электрического тока через водные растворы не восстанавливаются до металла восстанавливается на катоде только водород по уже приводившейся реакции Н+- -е=0,5Н2 (точнее, НзО+-1-е = 0,5Н2-1-Н20). Это обстоятельство мешает исследователям и производственникам распространить электролиз — наиболее удобный и технологичный метод разделения и очистки металлов — на все элементы периодической системы. Но то, что мешает электролизу водных растворов, для неводных — не помеха  [c.74]

    Одно из важных достоинств метода внутреннего электролиза - возможность проведения тонких химических разделений, так как на платиновом катоде выделяются металлы только более благородные, чем металл анода. Если, например, в качестве анода используется свинцовая пластинка, то на катоде будут выделяться только те металлы, потенциал которых превышает потенциал нары РЬ , РЬ, и не будут выделяться металлы с более отрицательным нотенциалом. Меняя анод, можно создавать условия разделения металлов с близкими нотенциалами. Существенным преимуществом метода является также чрезвычайная простота аппаратурного оформления, позволяющая использовать метод практически в любой лаборатории. [c.115]

    Методы разделения РЗЭ основаны на небольших различиях в свойствах их соединений. Ранее это была многократная дробная перекристаллизация, в настоящее время основным методом разделения стала селективная экстракция органическими растворителями в сочетании с ионнообменной хроматографией. Сравнительно легко отделяются элементы с отличной от трех валентностью Се, Ей, Ь. Металлы получают из хлоридов или фторидов металлотермическим восстановлением чистым кальцием или магнием или электролизом расплавов с жидким катодом из цинка или кадмия. [c.191]

    Электрохимические методы разделения применяются не так часто. Выделение кобальта электролизом из аммиачных раство- )ов позволяет отделять его от цинка, кад.мия и других эле.мен-тов, однако медь и никель также осаждаются на катоде. Для [c.61]

    Методы выделения кобальта электролизом и его отделение от других элементов рассмотрены на стр. 90. Был предложен метод разделения кобальта и цинка [339], основанный на выделении обоих элементов на ртутном катоде и последующем анодном растворении полученной амальгамы. Прн этом цинк переходит из амальгамы в виде ионов в водный раствор, а кобальт выделяется пз амальгамы с большим перенапряжением и поэтому практически полностью остается растворенным в ртути. Проверка метода показала [39], что разделение не количественно, много цинка остается в амальгаме. Для отделения кобальта от цинка и кадмия было предложено проводить электролиз из щелочного раствора, содержащего тартрат натрия-калия и иодид калня последний прибавляется для предотвращения окисления кобальта на аноде до высшего окисла [1449, 1463]. Изучены условия отделения висмута от кобальта электролизом [66а]. [c.87]

    Разработан метод разделения А , С , Си, и ЗЬ при внутреннем электролизе с цинковым анодом и сетчатым платиновым катодом из растворов, содержащих ионы Ге " " и комплексон III [641, 642]. [c.142]

    Для разделения и концентрирования компонентов анализируемой смеси используют методы осаждения, соосаждения, экстракции, хроматографии, электролиза, электрофореза, дистилляции, сублимации, зонной плавки, флотации и др. В основе большинства методов разделения лежит принцип избирательного распределения компонентов пробы между двумя разделяющимися фазами. Открываемый компонент пробы переводят по возможности полностью в одну из фаз. [c.120]


    Широкое распространение в цветной металлургии получил амальгамный метод разделения различных элементов. Некоторые элементы (А1, Ве, В, Т1, ЫЬ, V, Та, 7г, Р, щелочные, щелочноземельные и редкоземельные), например, из слабокислых растворов на ртутном катоде не выделяются и галлий можно отделить от них электролизом. От элементов, переходящих в амальгаму, галлий может быть отделен при электролитическом ее разложении. Поддерживая определенные значения анодного потенциала (рис. 7), из амальгамы можно выделить последовательно большинство металлов [526]. [c.69]

    В основу классификации можно положить не только число и агрегатное состояние фаз, но и другой принцип — степень превращения разделяемых веществ. Химическим превращением веществ сопровождаются методы, связанные с осаждением, ионным обменом, выделением газа. При электролизе происходит электрохимическое изменение вещества. Группу методов разделения без превращения вещества представляют хроматография, дистилляция, кристаллизация, зонная плавка, молекулярная седиментация н др. Методы разделения и концентрирования могут быть разделены и по числу (кратности) распределений между фазами — однократные и многократные. [c.71]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения металлов является метод электроосаждения на ртутном катоде [14]. Поскольку перенапряжение водорода на ртути очень велико (более 1 в), то любой металл, потенциал осаждения которого меньше этой величины, может быть выделен на ртутном катоде, а металл, требующий более отрицательного потенциала, останется в растворе. Так, на ртутном катоде не будут осаждаться алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам и уран. Щелочные и щелочноземельные металлы можно осадить только из основного раствора. Этот метод с большим успехом применяют для удаления железа и по- [c.189]

    Методы разделения, основанные на равновесии между двумя жидкими фазами. К методам этой группы относятся экстракция органическими растворителями и электролиз на ртутном катоде. Преимуществом данных методов, по сравнению с осаждением, является то, что при этом мало захватывается посторонних веществ. Это обусловлено тем, что поверхность раздела двух фаз невелика и легко подвижна. Электролиз на ртутном катоде представляет собой часть электровесовых методов и рассматривается в общем курсе количественного анализа. [c.44]

    Одним из наиболее перспективных путей получения восстанавливающихся элементов является, безусловно, их электролиз на ртутном катоде. Как правило, электролитическое восстановление 5т, Ей, УЬ проводят из аце-тат-цитратных растворов, содержащих ион щелочного металла (Ыа , К" ", Ь ), что дает основание рассматривать катод как амальгамированный соответствующим щелочным металлом. По-видимому, в действительности происходит восстановление р. з. э. за счет обеих причин — прямого электролиза на ртутном катоде и восстановления образовавшейся амальгамой щелочного металла. Но каков бы ни был истинный механизм электролиза на гра-нице раздела (прикатодный слой электролита — ртуть), его эффективность как метода разделения, согласно уравнению Нернста, определяется соотношением концентраций Ме " в электролите и Ме в амальгаме. Следовательно, всякий фактор, влияющий на изменение любой из этих величин, косвенно воздействует и на результаты электролитического восстановления. [c.287]

    Важнейшие методы разделения изотопов диффузия и термодиффузия в газах, центрифугирование газов, электролиз. [c.397]

    Значительный прогресс достигнут за последнее время в области аналитических разделений. Применение гомогенного осаждения значительно улучшило многие разделения, которые ранее требовали больших затрат времени. Экстракционные разделения улучшены благодаря систематическому изучению равновесий, возникающих при образовании хелатных соединений металлов и при их экстракции из водных растворов. Разделения электролизом также усовершенствованы благодаря применению электролиза с контролируемым потенциалом. Кроме того, некоторые методы разделения, которые считались еще недавно неприемлемыми для условий количественного анализа, вошли в настоящее время в практику благодаря использованию многократного повторения ряда ступеней распределительного равновесия. Ярким примером такого процесса служит применение ионитов для количественного разделения ионов редкоземельных металлов, которое ранее требовало в некоторых случаях многих тысяч отдельных перекристаллизаций. [c.15]

    Какой анод и среду удобнее выбрать для разделения свинца и железа методом внутреннего электролиза  [c.344]

    Электролитическое восстановление может быть проведено на ртутном катоде и использовано для выделения не только РЗЭ переменной валентности, но и остальных РЗЭ [82]. В основе метода разделения электролизом с ртутным катодом лежит способность РЗЭ в растворах цитрата лития наряду с обычными комплексами [Ln it2] " образовывать комплексы [LnH it]" , способствующие переходу РЗЭ в Hg-фазу. Эффективность разделения зависит от относительного распределения РЗЭ между ртутной фазой и раствором электролита. Существенную эоль играет комплексообразование в водной фазе. Образование Ln it2] затрудняет электролиз. Вследствие меньшей прочности комплексов у РЗЭ с меньшими атомными номерами они в Hg-фазу переходят легче, легкие РЗЭ концентрируются в Hg-фазе, тяжелые — в растворе. Степень разделения для наиболее трудной пары Рг — Nd равна трем при использовании 0,5 М раствора. При разделении РЗЭ разной валентности, в частности Ти + и Yb +, степень разделения достигает 1000. [c.116]

    Разделение компонентов пробы на группы. В химическом анализе щироко используют многочисленные методы разделения веществ осаждение, экстракцию, ионообменную и распределительную хроматографию, ректификацию, отгонку, электролиз и некоторые специальные методы (электрофорез, метод молекулярных сит и др.). Однако ввиду того, что ни один из указанных методов не обеспечивает полного выделения и не гарантирует абсолютной чистоты отдельных фракций по отделяемым компонентам, операции разделения неизбежно отягощены погрещностями, занижающими или завыщающими конечный результат. [c.19]

    Если в электролизе при постоянном наложенном напряжении или при постоянной силе тока использовать ртутный катод, то можно выполнить несколько успешных определений. Такой же прием можно использовать в качестве метода разделения, предшествующего какому-либо другому виду физического или химического измерения. В связи с пеобы- [c.116]

    Вторичные процессы, связанные со смешением полученных на электродах продуктов — хлора и каустической соды и последующим их взаимодействиел между собой. Характер и значение этих процессов меняются в зависимости от применяемого способа электролиза, метода разделения электродных пространств и режима работы электролизера. [c.101]

    Электроосаждение наиболее часто используется при определении микроколичеств Sb методами инверсионной вольтамперометрии (см. главу IV). Миллиграммовые количества Sb осаждают при контролируемом потенциале в виде элементной Sb для ее гравиметрического определения [47, 279, 849—852]. Из лимоннокиС лого раствора Sb можно отделить от Bi и Sn [1025]. Описан [89] метод отделения, основанный на электроокислении Sb(III) до Sb(V) на графитовом электроде при потенциале 0,8 в в растворах НС1 в присутствии родамина С, образующего на электроде с Sb(V) осадок гексахлоростибата родамина С, используемый для последующего определения Sb методом инверсионной вольтамперометрии. Для выделения радиоактивной Sb, а также d, Pd и Ag из смеси продуктов деления рекомендован метод внутреннего электролиза в среде 5 М Na l с использованием ячеек с разделенными катодным и анодным пространствами [1616]. [c.117]

    Из большого числа методов разделения ниже приведено лишь несколько пригодных для работы с небольшими количествами веществ н достаточно простых в аппаратурном оформленпи. Более подробно с этим вопросом можно ознакомиться по специальным монографиям. Обширная информация содержится в обзорах [1, 2]. Будут рассмотрены следующие методы фракционирования кристаллизация, осаждение, дистилляция, селективные реакции и электролиз, ионный обмен и адсорбция, распределение между двумя растворителями. [c.1420]

    Описан метод внутреннего электролиза в ячейке с разделенными камерами. Католитом является 5—10%-ная НС1, анолитом 10%-ный Na l катод сделан из платины, анод — из цинка, серебра или магния. Метод пригоден для анализа сплавов Аи — Ag — Си [904]. Следовые количества золота можно выделить на 95% электролитически на стекловидном графитовом электроде в среде 1,5 Л/ НС1 -Ь 0,5 М HNO3, 1 М H IO4, 0,2 М КОН + 0,3 М K N 0,2 М КОН + 0,4 М K N [349]. [c.175]

    Для определения милли- и микрограммовых количеств серебра применяют метод внутреннего электролиза. В качестве катода используется платиновая сетка, а материалом анода служат более электроотрицательные металлы — Си, п, РЬ. Электролий проводят в сосуде, разделенном диафрагмой на катодную и анодную часть или после покрытия материала анода коллодием. В методе внутреннего электролиза большое значение имеет [c.69]

    Этот метод можно также применять для управления потенциалом анода при селективном электролитическом окислении. Однако в анализе это не нашло применения. Электролиз с управляемым потенциалом широко применяется при изготовлении органических и неорганических препаратов методами электроокисления и электровосстановления. Например, только эгим способом приготавливаются двухвалентные ионы селена и теллура, а также ионы и +, различные пинаконы, ги-дроксиламины и пр. Он является ценным методом разделения радиоактивных атомов в субмикрограммовых количествах. [c.188]

    Разделение металлов для их количественного определения имеет особенно большое значение при определении микропримесей в различных материалах. К методам разделения, которые могут быть использованы для этой цели, относятся и амальгамные методы, к которым причисляют электролиз с ртутным катодом, обычно в сочетании с последующ,им анодным окислением полученных амальгам, и цементацию металлов амальгамами. [c.214]


Смотреть страницы где упоминается термин Методы разделения электролизом: [c.116]    [c.313]    [c.144]    [c.169]    [c.347]    [c.347]   
Аналитическая химия алюминия (1971) -- [ c.0 ]

Аналитическая химия алюминия (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы разделения электролизом ртутном катоде

Побочные процессы при электролизе с твердым катодом и методы разделения продуктов электролиза



© 2025 chem21.info Реклама на сайте