Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование на ртутном катоде

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]


    В способе с ртутным катодом электролиз ведут в ваннах с горизонтальным или вертикальным расположением электродов. На катоде образуется амальгама натрия, которая выводится из электролизера и затем из нее получают 50%-ную чистую щелочь обычным способом (стр. 412). На аноде, стойком к выделению кислорода, происходит образование кислоты. Во избежание образования взрывоопасных смесей газов (на катоде происходит некоторое выделение водорода), попадания концентрированной кислоты в прикатодную зону и окисления ртути кислородом приходится применять диафрагму, отделяющую катодное пространство от анодного. [c.438]

    Ванна состоит из электролизера 1, разлагателя 2 и ртутного насоса 3. В электролизер / подают раствор хлорида металла и ртуть. В процессе электролиза на аноде 7 выделяется хлор и образуются сопутствующие примеси, а на ртутном катоде 6 — щелочной металл, образующий с ним сплав — амальгаму щелочного металла. Обедненный хлоридом металла раствор, хлоргаз и амальгаму выводят из электролизера. Амальгама щелочного металла попадает и разлагатель 2, в который подают воду. В разлагателе имеется графитовый катод 4, который электрически накоротко замкнут с амальгамой, являющейся в разлагателе анодом 5. В разлагателе в результате электрохимического процесса образуется концентрированный раствор гидроксида металла. Ртуть из разлагателя 2 ртутным насосом 3 перекачивается в электролизер. [c.83]

    На процесс электролиза значительное влияние оказывают некоторые примеси, присутствующие в рассоле, поэтому их содержание в рассоле регламентировано. Так, содержание кальция в рассоле может быть не более 1 г, магния — 0,005 г/л. При более высоком содержании ионов этих металлов образуются гидроксиды, которые осаждаются на ртутном катоде, экранируя часть его поверхности. Участки катода, свободные от нерастворимых гидроксидов, работают при высоких плотностях тока и на них образуется концентрированная амальгама, разлагающаяся в электролизере с высокой скоростью с образованием щелочи и водорода. [c.164]

    При определении алюминия оксихинолиновым методом мешающие элементы удаляют электролизом на ртутном катоде [12641, экстракцией купферонатов [12891, либо экстракцией амилацетатом из концентрированной НС1 (железо). [c.214]

    В литературе описано много работ и патентов в области электролиза с ионообменными диафрагмами с получением чистой и концентрированной каустической соды без применения ртутного катода [35, 36]. Однако эти работы не доведены до разработки промышленной конструкции электролизера и внедрения в промышленность. Имеются лишь сообщения о строительстве в Японии опытной установки с ионообменными мембранами для получения хлора и чистого едкого натрия производительностью по хлору 4400 т/год [37]. [c.19]


    Методы V группы. В последнее время широкое распространение получил новый способ полярографического анализа, основанный на предварительном электролитическом концентрировании металлов в виде амальгам на ртутном катоде [356, 565, 1114, 1260] или в виде малорастворимого осадка на твердых катодах с последующим анодным растворением их при постепенно снижающемся [c.81]

    Основным лабораторным и промышленным методом получения гидроокисей рубидия и цезия высокой чистоты является электролитический метод с использованием жидкого (ртутного) катода [6, 109, 113, 114]. На рнс. 10 приведена схема типовой лабораторной установки [109]. Электролизер наполняют концентрированным водным раствором карбоната, к которому во время работы постепенно добавляют твердый карбонат соответствующего щелочного металла. В процессе электролиза в первом сосуде образуется [c.90]

    Первые три метода представлены примерами в следующих синтезах. Амальгама натрия (синтез 4) быстро получается при непосредственном соединении металла с ртутью (метод 1). Амальгама бария (синтез 5) может быть быстро получена электролизом насыщенного раствора хлорида бария с ртутным катодом (Метод 2а). Амальгама бария также легко получается действием амальгамы натрия на концентрированный водный раствор хлорида бария (метод 3). [c.11]

    Многие ионы металлов могут быть разряжены на ртутном катоде благодаря высокому перенапряжению водорода. Поэтому электролитические методы приготовления амальгам широко применяются и имеют особенное преимущество благодаря тому, что здесь достигается тесный контакт ртути с металлом. Можно предположить, что процесс амальгамирования в этих условиях протекает быстро потому, что металл в момент его образования из иона находится в активном атомарном состоянии. При электролитическом методе желательно брать концентрированные растворы для того, чтобы свести до минимума обратную реакцию разложения амальгамы растворителем. Кроме того, не следует употреблять соли, содержащие легко восстанавливающиеся анионы, такие, как нитраты. [c.12]

    Амальгамы редкоземельных металлов [3]. Амальгамы редкоземельны.х металлов с содержанием приблизительно до 3% редкоземельного металла могут быть получены путем электролиза спиртовых растворов соответствующих, безводных хлоридов с ртутным катодом и графитовым анодом. После их получения можно осуществить и дальнейшее концентрирование таких амальгам путем отгонки из них ртути. [c.2174]

    Определение кобальта после концентрирования электролизом на ртутном катоде [1081]. Сернокислый анализируемый раствор циркония (или титана) подвергают электролизу с ртутным катодом током 2 а и плотности 0,5 а/см . Ртуть высушивают и дистиллируют в токе азота при 350° С. В остатке определяют кобальт нитрозо-Н-солью. Опыты, проведенные с радиоактивным Со °, показали, что в описанных условиях кобальт осаждается практически полностью. [c.206]

    Возможность получения в ртутных ванных концентрированных щелоков, свободных от поваренной соли, является существенным достоинством ртутных ванн. Исходя из этого во всех случаях, когда требуется чистая щелочь (например, для производства вискозного волокна), предпочтение должно быть отдано ваннам с ртутным катодом. В связи с росто.м потребности в чистом каустике электролиз в ваннах с ртутным катодом приобрел большое распространение. Так, в ФРГ 85% хлора и каустика получается в ваннах с ртутным катодом, в Японии — 50—55%, в Италии — 40%. [c.333]

    Вместо электролиза с ртутным катодом для концентрирования примесей может быть применен метод цементации водных растворов амальгамами электроотрицательных металлов. Этот метод мы также относим к числу электрохимических, так как процесс цементации является сочетанием двух чисто электрохимических [c.135]

    Электрохимические методы [37, 12 Г, 155]. Из электрохимических методов отделения и концентрирования примесей следует указать на электролиз на ртутном катоде, используемый для выделе- ния большого чисЛа металлов (Ре, Сг, N1, Со, 2п, В1, Мо, 8п, Сс и т. д.). Применение маскирующих веществ и регулирование потенциала выделения позволяют выделить на ртутном катоде большие количества тяжелых металлов без выделения примесей других, например при определении следов никеля и цинка в меди высокой чистоты [159]. [c.82]

    Концентрирование следов элементов электролизом. При концентрировании следов элементов можно использовать электролиз с целью либо предварительного отделения определяемых элементов, либо удаления элементов, присутствующих в высоких концентрациях и обладающих развитым спектром, который мешает спектральному анализу. Последний случай наиболее важен. Для этого чаше всего применяют электролиз с ртутным катодом. Он обладает тем преимуществом, что водородное перенапряжение, возникающее на ртутном катоде во время электролиза, способствует осаждению нескольких элементов с развитым спектром [20]. [c.59]


    II. Скорость движений раствора и прирост силы тока на полярографической кривой сила тока — напряжение . ЖФХ, 1941, 15, вып. 4, с. 475—480. Библ. 4 назв. 1025 Крюкова Т. А. и Кабанов Б. Н. Движение раствора возле капельного ртутного катода. [Сообщ.] 3. Движение в концентрированных растворах посторонних электролитов и образование ложных волн на полярографической кривой. ЖОХ, 1945, 15, вып. 4-5, с. 294—302. Резюме на англ. яз. Библ. И назв. 1026 [c.46]

    Трихлорид молибдена M0 I3 — темно-красное кристаллическое вещество. M0 I3 не растворим не только в воде, но и в соляной кислоте. Водные растворы M0 I3 можно получить электролитическим восстановлением на ртутном катоде оксида молибдена (VI), растворенного в концентрированной НС1. [c.330]

    Получение. В химической промышленности свободный хлор получают электролизом очищенного от примесей концентрированного раствора каменной соли. На производство 1 т хлора затрачивается 1г7—1,8 т соли. Хлорид-ионы окисляются в свободный хлор на графитовом аноде, а на железном или ртутном катоде выделяется газообразный водород и накапливается раствор NaOH., Водород отводится по металлическим, а хлор по стеклянным или керамическим трубам. Влажный хлор особенно агрессивен, поэтому его сушат концентрированной серной кислотой, после чего его можно хранить в стальных баллонах..  [c.219]

    Этот процесс может быть осуществлен с практически количественным выходом по току и по веществу непосредственно при электролизе достаточно концентрированных растворов акрилонитрила (более 10%) в водном растворе тетраэтиламмоний-п-толуол-сульфоната на свинцовом или ртутном катоде при плотности тока 600 а/м . Выбор столь сложного электролита связан также с низкой растворимостью акрилонитрила в обычных водных средах. Динитрил адипиновой кислоты является важнейшим полупродуктом синтеза полиамидного синтетического волокна. По предварительным оценкам этот метод может оказаться весьма эффективным и достаточно конкурентноспособным с используемыми в настоящее время химическими методами. Электрохимическое восстановление динитрила адипиновой кислоты до гексаметилендиа-мина также является перспективным процессом  [c.449]

    Вместо сульфатов по аналогичной реакции можно использовать карбонаты или алюмоквасцы рубидия и цезия. Другой путь — ионообменный с применением анионитов в ОН-форме и растворов hie SO ,. Для получения МеОН высокой чистоты в лабораторных и промышленных масштабах используют электролитический метод с применением жидкого (ртутного) катода. Электролитом служат концентрированные водные растворы МеаСОз, к которым во время работы постепенно добавляют твердые МеаСОз. В процессе электролиза образуются амаль- [c.87]

    На заводе в Дуйсбурге (ФРГ) таллий извлекают вместе с другими металлами из пиритных огарков хлорирующим обжигом [126]. На растворы после осаждения из них меди и кобальта действуют цинковой пылью (рис. 92). Цементную губку, содержащую 10—15% d, 1—2% Т1, 0,2% In и непрореагировавший цинк, растворяют в разбавленной серной кислоте, и амальгамой цинка (взятой в стехиометрическом количестве) снова выделяют из раствора d, Т1, In. Полученную сложную амальгаму подвергают фракционной дистилляции. Нелетучий остаток — амальгаму таллия и индия — разлагают серной кислотой из полученного раствора кристаллизуют TI2SO4. Индий остается в амальгаме, откуда его извлекают при азотнокислом разложении. Из раствора, содержащего 500 г/л Лп, органическими растворителями удаляют примеси, после чего электролизом с ртутным катодом получают концентрированную амальгаму с 30—40% In. Металлический индий получают описанным ранее методом электролиза с расплавленным индиевым катодом. [c.354]

    Электрохимические методы в настоящее время развиваются весьма итснсивно. Электрогравиметрический метод в его классической форме применяют главным образом для определения меди, как и 100 лет назад. Электроосаждение других металлов производят только для их концентрирования при определении малых количеств, например в ставах. Разделяют на ртутном катоде, так как образующиеся амальгамы металлов не остаются на поверхности электрода, а переходят внутрь всего объема ртути, образуя истинные или коллоидные растворы. [c.454]

    Для понижения, предела обнаружения хрома полярографическим методом используют различные приемы его концентрирования. Наиболее часто осуществляют осаждение пленки малорастворимого хромата ртути (ПР = 2-10 ) на стационарном ртутном катоде с последующим ее растворением при линейно изменяющемся потенциале [375]. Как видно из рис. 6, наблюдается прямолинейная зависимость максимального катодного тока от концентрации хромат-ионов в растворе в интервале (3+-25) 10 Л/. Г1редел обнаружения r(VI) 3-10 М. Метод применяют для определения хрома в dSO.  [c.58]

    Свойства. Ртуть является единственным металло.м, который находится в Ж идком состоянии при обыкновенной температуре (радмий элемент галлий плавится пр И 29,8 ). Осажде нная из растворов в тонко раздробленном состоянии и будучи не совсем чистой, она образует темвосерый порошок. Ртуть е окисляется при обыкновенных температурах воздухом или кислородом, но медленно окисляется при температуре ее кипения. Она растворяет многие металлы, образуя амальгамы, им еющие важное промышленное значение. Амальгамы часто получаются при электролизе растворов с ртутным катодом. Ртуть не растворяется в соляной и разбавле нной серной кислотах, но растворяется в горячей концентрированной серной ки слоте с выделением двуокиси серы, причем образуется сульфат одновалентной ИЛИ двухвалентной ртути в зависимости от того, что находится в избытке — кислота или металл  [c.122]

    Электрохимический метод основан на выделении галлия из алюминат-ных растворов электролизом на ртутном катоде [173, 179, 253, 566, 675, 803, 1009, 1197, 1198]. После разложения амальгамы получается концентрированный раствор галлата натрия (ilO—80 г Ga/ ), из которого металлический галлий выделяют электролизом в ваннах с неокисляющимся катодом (188, 189, 676]. Можно также извлекать галлий из алюминатных растворов цементацией амальгамой натрия [329, 547, 548], металлическим алюминием, галламой алюминия [159, 549] или электролитическим осаждением его на твердых катодах из свинца и меди [178]. При обработке катода горячей концентрированной щелочью галлий переходит в щелочной раствор, откуда может быть выделен в виде металла на катоде из нержавеющей стали. [c.7]

    Растворяют 3 г сплава магния в 15 мл Н2504 (1 4), нейтрализуют аммиаком (1 4) до появления мути гидроксидов, которую растворяют добавкой 5—6 мл Н2504 (1 4). Раствор разбавляют до 150 мл водой и переводят в ячейку для электролиза с ртутным катодом. Электролиз проводят при напряжении 6 В и плотности тока 0,15 А/см [для удаления Ре(1П), Си(П) и N (11)1 при размещивании. После электролиза раствор переводят в мерную колбу вместимостью 250 мл и разбавляют до метки. Отбирают пипеткой 25,0—50,0 мл раствора в мерную колбу вместимостью 100 мл, добавляют 5 мл 5%-ного раствора ЭДТА, 10 мл концентрированного аммиака, 1,5 мл 4 /о-иого раствора НзОа после перемешивания доводят водой до метки и через 10 мин измеряют оптическую плотность при 400 нм по холостой пробе с реактивами. [c.166]

    Получение растворов кремневой кислоты, из которых выращивают золь, возможно различными путями. При этом в качестве сырья большей частью желательно использование растворов жид кого стекла — дешевого продукта, выпускаемого в большом количестве. Помимо описанного выше использования катионитов, удаление ионов натрия возможно путем электролиза растворов силикатов с ртутным катодом. Согласно Вейлу [13], электролиз концентрированных растворов провести не удается, необходимо их разбавление, следовательно, и последующая выпарка. Возможно также получить золи нейтрализацией растворов щелочных силикатов кислотами с последующим электродиализом. Образующиеся при этом кислоту и щелочь можно вновь употреблять для приготовления раствора силиката и его нейтрализации. [c.76]

    Ртутный способ основан на том, что потенциалы выделения щелочных металлов значительно понижаются при применении ртутных катодов вследствие большой тенденции щелочных металлов сплавляться со ртуть4о в то же время напряжение, требуемое для выделения водорода, вследствие заметного перенапряжения, которым обладает водород при выделении на ртути, значительно увеличивается. Таким образом, оказывается, что при электролизе концентрированного раствора ха орида щейочного металла с применением ртутного катода водород не выделяется, а напротив, разряжаются ионы щелочного металла. Сплав, который щелочной металл образует с ртутью, в особой камере разлагается водой с образованием щелочи Разложению сильно разбавленной амальгамы препятствует перенапряжение водорода при его выделении на ртути. Поэтому во второй электролит, камере ртутная амальгама служит анодом, в качестве катода используют железо, на котором водород в щелочном растворе выделяется почти без перенапряжения. Таким образом, получают установку, схематически представленную [c.209]

    При способе с ртутным катодом непосредственно из разла-гателя ванны получают концентрированную щелочь (700— 760 г/л NaOH) — очень чистую, не содержащую хлоридов. Таким образом, надобность в выпаривании растворов щелочи отпадает и пар для выпаривания не расходуется. Расход электроэнергии при этом способе значительно выше, чем при диафрагменном. [c.33]

    Согласно этому уравнению, существует линейная связь между In / и Г), т. е. такая же, как и для случая выделения водорода. При выделении металлов существует более или менее удовлетворительное совпадение экспериментальных и вычисленных величин в отдельных точках. Однако и эти совпадения, по данным Одюбера и Боннеме, ограничиваются случаями осаждения ртути и меди на ртутных катодах. Для процесса выделения металлов на твердых катодах и на концентрированных амальгамах не было получено удовлетворительных результатов. [c.337]

    При проведении электр.олиза с растворимым медным анодом в растворе сульфата натрия в ванне с диафрагмой можно одновременно получать медный купорос и едкий натр. Особый интерес это может представить при применении ртутного катода с получением из образовавшейся амальгамы натрия концентрированной щелочт1. Анодная жидкость, кроме медного купороса, будет содержать сульфат натрия, однако медный купорос и сульфат натрия могут быть легко отделены друг от друга (как известно, трудность разделения серной кислоты и сульфата натрия является одним из сложных вопросов в проблеме электролиза сульфата натрия). Таким образом, этот способ позволяет получать щелочь и медный купорос без затраты кислоты., [c.675]


Смотреть страницы где упоминается термин Концентрирование на ртутном катоде: [c.345]    [c.114]    [c.39]    [c.440]    [c.448]    [c.315]    [c.659]    [c.155]    [c.95]    [c.315]    [c.172]    [c.167]    [c.629]   
Методы концентрирования микроэлементов в неорганическом анализе (1986) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

ртутный



© 2025 chem21.info Реклама на сайте