Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации прямые и обратные

    ПРЯМЫЕ, ОБРАТНЫЕ И СУПРЕССОРНЫЕ МУТАЦИИ [c.151]

    Исходя из наблюдаемой скорости появления точковых мутаций (одна мутация на 10 удвоений гена), мы можем подсчитать, что одна мутация приходится на 10 репликаций единичного нуклеотида. Точковые мутации имеют тенденцию к обратному мутированию, причем обратные мутации часто происходят с такой же скоростью, как и прямые. Это значит, что в одной из 10 обратных мутаций будет мутировать тот же самый нуклеотид, в результате чего ген вернется к исходному виду. Это явление легко можно объяснить. Например, если Т будет замещен на С, поскольку С образует минорный таутомер и спаривается с А, то мутация приведет к тому, что в двойной спирали ДНК-потомков появится пара ОС. При репликации этой пары существует хотя и малая, но определенная вероятность того, что С в цепи материнской ДНК вновь образует минорную таутомерную структуру и образует пару с А, а не с О, что в свою очередь приведет к обратному мутированию. [c.247]


    Ревертанты и прямые мутанты образуются под действием одного и того же агента при простых замещениях. В дальнейшем мы будем считать, что соотношение прямых и обратных мутаций 10 —10 является нормальным и свидетельствует об обратимости действия соответствующего мутагена. В этом смысле рассмотренные нами аналоги оснований весьма типичны. Аналоги оснований действуют мутагенно только в процессе биосинтеза ДНК, т. е. включаясь в биохимические реакции, протекающие в клетке. Другие химические мутагены действуют па ДНК в состоянии покоя путем непосредственной химической атаки, а не через биохимические процессы. В этом мы убеждаемся по следующим признакам а) эти мутагены действуют на выделенную из организма [c.397]

    Прямые, внутригенные супрессоры похожи на истинные обратные мутации тем, что они залечивают первичное генетическое повреждение и представляют собой другую мутацию в том же самом мутантном гене. Но в отличие от истинной обратной мутации, при которой восстанавливается исходная первичная структура полипептидной цепи, при внутригенной супрессорной мутации первичная структура белка исправляется за счет того, что в нее вводится второе изменение, которое компенсирует действие первой мутации и допускает образование функциональной третичной и четвертичной структуры. Примеры таких прямых, внутригенных супрессоров будут рассмотрены в гл. ХИ1. Наконец, в гл. ХУП будут обрисованы супрессоры еще одного, третьего класса, которые были открыты лишь в 1960 г. [c.155]

    Легко понять, по какой причине мутагенные аналоги оснований индуцируют как прямые, так и обратные мутации первого типа. Бромурацил, например, включившись вместо тимина в полинуклеотидную цепь фаговой ДНК, значительно повышает вероятность замен на уровне матрицы, ибо он незаконно спаривается во время репликации с гуанином, который благодаря этому становится в синтезируемой реплике на место, принадлежащее аденину. Однако тот же бромурацил индуцирует и обратную мутацию, в которой мутантная пара /гуанин — ОМЦ вновь заменяется исходной парой аденин—тимин.Это происходит вследствие резкого повышения вероятности замены на уровне субстрата, при которой в синтезируемую реплику включается бромурацил (а, значит, в следующих циклах репликации и тимин), незаконно спаривающийся с гуанином, находящимся в мутантном участке. Таким образом, первоначальное предположение Уотсона и Крика о появлении спонтанных мутаций вследствие способности пуриновых и пиримидиновых оснований к таутомеризации, очевидно, правильно объясняет происхождение лишь тех 10% спонтанных мутантов, которые несут мутации первого типа, а также спонтанную реверсию к дикому типу г мутантов гП первого типа (ревертирующих спонтанно с гораздо более низкой частотой, нежели в присутствии мутагенных аналогов оснований). [c.324]


    Мутации, инактивирующие ген,-это прямые мутации. Вызванное ими повреждение может быть устранено в результате обратных мутаций, которые подразделяются на два типа. Точное восстановление исходной структуры называют истинной обратной мутацией (истинной реверсией). Например, если пара А—Т заменена парой О—С, другая мутация, восстановившая пару А—Т, восстановит и последовательность дикого типа. Однако эффект первой мутации может быть компенсирован мутацией в другой части гена. Такие мутации называют вторичными реверсиями. Например, замена одной аминокислоты может нарушить функцию гена вторичное же изменение может компенсировать первое и восстановить активность белка. [c.41]

    Когда Ар = О, наступает равновесие между прямыми и обратными мутациями. Обозначая равновесные частоты аллелей как р и из условия Др = 0 получаем [c.119]

    Предположим, что частоты прямой и обратной мутации равны соответственно м=10 и г =10 . Тогда [c.119]

    Следует отметить еще два обстоятельства. Во-первых, частоты аллелей обычно не находятся в состоянии, отвечающем равновесию между прямыми и обратными мутациями, потому что на них влияют и другие процессы. В частности, естественный отбор может благоприятствовать одному аллелю в ущерб другому равновесные частоты аллелей определяются при этом, как мы увидим в гл. 24, взаимодействием между мутациями и отбором. Во-вторых, при наличии прямых и обратных мутаций изменение частот аллелей происходит медленнее, чем в том случае, когда мутации идут только в одном направлении, поскольку обратные мутации частично компенсируют изменения частоты аллелей в результате прямых мутаций. Это еще раз подтверждает сказанное выше для того чтобы мутации сами по себе привели к сколько-нибудь значительному изменению частот аллелей, требуется очень много времени. [c.119]

    Обратные мутации. Изменения мутантного гена, приводящие к восстановлению функции дикого типа (ср. Прямые мутации). [c.311]

    Прямые мутации. Мутации от дикого типа к мутантному (ср. Обратные мутации). [c.313]

    С учетом прямых и обратных мутаций суммарное изменение частот р тл. д составит  [c.128]

    Прямые и обратные мутации. При мутации гена дикого типа и последующем переходе возникшего изменения в первоначальное состояние можно говорить о прямой и обратной мутации. Например, у дрозофилы доминантный ген красной окраски глаз ш+ может мутировать в рецессивный ген белой окраски ш, который, в свою очередь, дает обратную мутацию. [c.206]

    Как правило, прямые мутации рецессивные, а обратные — доминантные. Поэтому для большинства генов частота прямых мутаций значительно выше, чем обратных. Очень часто рецессивные мутации связаны с утерей наследственного материала хромосомы, и обратная мутация в этом случае невозможна. Некоторые не- большие хромосомные нехватки по их внешнему проявлению бывают трудно отличить от точковых мутаций, не связанных с утерей наследственного материала хромосомы. Но это различие можно установить по способности полученного изменения к обратному мутированию. [c.206]

    Если выпадет пара оснований вблизи вставки (слева или справа), то за пределами участка, ограниченного вставкой и выпадением (прямой мутацией и супрессором) нуклеотидных пар, исходная информация будет восстановлена благодаря сдвигу рамки (сдвигу считывания) в обратном направлении  [c.392]

    Прямые мутации в локусе А происходят с частотой 2- 10 , а обратные — с частотой 3- 10 . Каковы ожидаемые частоты аллелей Д и о в популяции при ее равновесном состоянии, если никакие другие процессы в ней не происходят  [c.475]

    По происхождению мутации делятся на спонтанные (неконтролируемые) и индуцированные (контролируемые). Первые возникают в результате неконтролируемого влияния каких-то естественных факторов (радиация, температура и т. д.). Направленное использование мутагенов приводит к возникновению индуцированных мутаций. Многими экспериментами четко показано, что мутации возникают независимо от условий среды обитания, т. е. не направленно. Мутации возникают в основном как ошибки репликации ДНК. Выделяют следующие типы мутаций перестройка хромосом, перестройка генома клетки грибов и водорослей (полиплоидия, гаплоидия, гетероплоидия), внутригенные изменения (прямые мутации, реверсии, обратные мутации). [c.102]

    Прямые мутации вызывают различные изменения, инактивирующие ген, тогда как обратные мутации должны восстановить функцию белка, поврежденного данной прямой мутацией. Таким образом, требования, предъявляемые к обратной мутации, гораздо более специфические, чем требования к прямой мутации. Частота обратных мутаций соответственно ниже, чем прямых, обычно в 10 раз. Иногда возникают также мутации в других генах, которые помогают каким-то образом обойти эффект первой мутации. Их называют супрессорными мутациями или более формально-внегенными супрессорами. [c.41]


    В некоторых системах полные ревертанты можно отличить от двух других классов по чувствительности к тому или иному ингибитору обмена веществ, такому, например, как аналог, ингибирующий рост подавлением синтеза мРНК, кодирующей синтез ферментов. Так, для системы биосинтеза триптофана в качестве аналога, обладающего таким эффектом, может служить 5-метил-триптофан. При низких концентрациях этот ингибитор не тормозит синтез триптофана у полных ревертантов, однако практически полностью прекращает его в штаммах, которые синтезируют триптофан в ограниченных количествах. Чтобы показать это, наносят по 10 —Ю клеток исследуемых штаммов на минимальный агар в чашки (разд. 13.9.10 или 13.9.15). Так же как в случае пробы на обратные мутации, наносят каплю раствора 5-метилтриптофана (1 мкг/мл) на стерильный диск фильтровальной бумаги. Зона торможения роста вокруг диска бумаги будет значительно больше для частичных ревертантов и супрессированных штаммов, чем для полных ревертантов. Можно также нанести клетки разных штаммов с обратными мутациями прямо в чашки на минимальный агар, содержащий 5-метилтриптофан (0,01 мкг/мл), и сравнить скорости их роста с наблюдаемыми на минимальном агаре без аналога. [c.34]

    Для оценки частоты выщепления м воспользуемся такой особенностью ПП, как наличие коротких фланкирующих прямих повторов, возникающих в момент встраивания ПП в геном в результате дупликации фрагмента генома в месте встраивания. Предполагается, что 1 ) фланкирующие повтор функционально ненагружены и эволюционируют со скоростью фиксации нейтральных мутаций V=5-10 замен на позицию за год 2)повторные и обратные мутации маловероятны и ими можно пренебречь. [c.67]

    Скорость спонтанных мутаций невелика, однако она может быть значительно увеличена воздействием химических мутагенов (разд. 3,1) или излучения. Этот подход дал возможность легко измерять скцростй прямых и обратных мутаций. После того как такие измерения были-осуществлены, оказалось, что, хотя мутации, вызываемые определенными химическими соединениями, например акридиновыми красителями, могут быть обращены, частота такого обращения значительно ниже частоты обычных обратных мутаций. Было показано, что эти мутации происходят в результате либо делеций (выпадений) одногй или нескольких нуклеотидов из цепи, либо вставок (включений) дополнительных нуклеотидов. Мутации типа делеций и вставок возникают, по-видимому, в результате ошибок в процессе генетической рекомбинации и репарации поврежденной цепи ДНК. [c.247]

    Рассмотрено также влияние на переходное время полицикли-ческой хронопотенциометрии частичной регенерации деполяризаторов из электродных продуктов [242]. При помощи счетно-решающего устройства проанализирована форма хронопотенцио-грамм при прямой и обратной поляризациях для процесса с дис-мутацией электродного продукта [245] сравнение рассчитанных кривых с экспериментальными — для восстановления и(У1) до и(У) с последующим диспропорциопированием и(У) — позволило найти величину константы скорости диспропорционирования, которая оказалась близкой к значению 0,95 10 л моль сек, найденному Э. Орлеманом и Д. Керном по высоте каталитической волны классической полярографии [116]. [c.49]

    Ап может вызывать также и му-тации типа трансверзий (см ), хотя и редко Для всех аналогов азотистых оснований характерны прямые и обратные мутации типа простых замен, например А=Т на Г S Ц или Ц = Г на Т=А (обратные мутации здесь Г s Ц заменяется на А=Т и А=Т — на Г = Ц) [c.220]

    При охвате любой проблемы совокупными методами сопредельных наук увеличивается компетентность решения каждой. Приведем несколько примеров, касающихся генетики, заинтересованной Б большинстве случаев в использовании при экспериментах четко выраженных п наиболее контрастных или других благоприятных для точного анализа признаков, безотносительно к тому, представляют ли они значение для отбора или нет. Так, в очень больших опытах по анализу частоты прямых или обратных мутаций известных генов иод влиянием весьма сильных химических мутагенов практически не обнаруживаются селекционно значимые лтутации, вне зависимости от того, изучается ли при этом чисто лабораторный или селекционно значимый объект. [c.4]

    В некоторых случаях приходится вести селекцию возвратных мутаций, когда организмы, утратившие но сравнению с диким типом какую-либо биохимическую функцию, приобретают ее вновь. Такие клетки, мутировавшие обратно к дикому типу, носят название ревертантов. Вести селекцию ревертантов гораздо легче, чем мутантов с недостаточностью. Поскольку в них появился фермент, которого раньше не было, то их можно выращивать на минимальной среде, в то время как исходные клетки требовали добавки того или иного метаболита. Поэтому и чувствительность здесь большая. Мы можем наносить на чашку Петри огромное число исходных клеток. Как будет показано в дальнейшем, ревертанты синтезируют фермент, который активен, но зачастую пе идентичен белку, синтезируемому исходным диким организмом. Следовательно, обратная мутация восстанавливает функцию, но не возвращает к структуре пемутированного белка. Другая весьма характерная деталь заключается в том, что обратные мутации отличаются более низкой вероятностью, чем прямые. [c.296]

    Для примера приведем сравнение прямых и обратных мутаций в цпстроне, определяющем синтез фосфатазы. При наблюдении мутаций под действием ультрафиолетового света [c.296]

    В последнее время Зиндер обнаружил интереснейшее физиологическое различие клеток F" и F+ (или Hfr). Оказалось, что существует особый вид фагов, замечательных тем, что вместо ДНК они содержат РНК, которые адсорбируются и заражают исключительно мужские клетки F" и Hfr. Это прямое подтверждение различного строения клеточной оболочки в зависимости от наличия или отсутствия в клетке фактора пола F, будь то в форме эписомы или прикрепленного к хромосоме в Hfr. Далее, в клетках F" все энисомы (а их имеется до 3—4 в каждой клетке клетки F" передают фактор пола клеткам F , сами при этом оставаясь F" ) инактивированы необратимо. Клетки F никогда не мутируют обратно в F" или Hfr. Что касается мутаций F+- F , то их образование индуцируется ультрафиолетовым светом и рядом мутагенов — солями никеля и кобальта или акридиновьши красителями. Принцип селекции на женские клетки F такой же, как на мужские Hfr. Сначала засевают исследуемую культуру ауксотрофных клеток Sm на универсальную агаровую среду, затем делают отпечаток на минимальной среде со стрептомицином, на которую посеян избыток нрототрофных Hfr, чувствительных к стрептомицину. [c.325]

    Еще одно важное применение гИ-мутации нашли при исследовании молекулярного механизма мутационного процесса. Бензер понял, что изучение природы событий, ведущих к образованию прямых мутаций, г — -гП, можно значительно облегчить, если исследовать обратные мутации или реверсии, гН —большого числа гН-мутантов разного происхождения. Бензер совместно с Э. Фризом отобрал сотни гН-му-тантов фага Т4, часть которых возникла спонтанно, а часть — под действием того или другого из рассмотренных выше мутагенов. Затем для каждого из этих мутантов была измерена частота, с которой они мутируют обратно к дикому типу как спонтанно, так и под воздействием мутагенных аналогов оснований и акридиновых красителей. Для этого лизат соответствующим образом обработанной бактериальной культуры, зараженной / П-мутантом фага, высевали на индикаторный газон штамма К, на котором могут расти только ревертанты г+. Эти исследования дали следующие результаты. Во-первых, спонтанные мутанты гП характеризуются чрезвычайно широким спектром частот спонтанных обратных мутаций некоторые мутанты ревертируют к состоянию rlV с высокой частотой, порядка 10" на фаг на одно удвоение, другие — с очень низкой, порядка 10 на фаг на одно удвоение. Между этими крайними значениями наблюдаются и промежуточные значения, образующие практически непрерывный спектр. Кроме того, примерно у 10% спонтанных мутантов вообще не обнаруживается реверсий. Из всего этого следует, что различные спонтанные мутации rll приводят к совершенно разным изменениям в последовательности нуклеотидов, в результате чего для восстановления исходной структуры дикого типа необходимы совершенно разные молекулярные события. [c.322]

    Другое важное наблюдение было сделано при структурном анализе-А-белка триптофан-синтазы у обратных мутантов Тгр+, полученных из Тгр -мутанта trpA23. У части таких обратных мутантов Тгр в 210-м. положении вместо вредного аргинина мутанта irpA23 был обнаружен нормальный глицин. Это хорошо согласуется с рассмотренной в гл. XIII возможностью того, что в результате обратной мутации восстанавливается исходная последовательность нуклеотидов в мутантном гене, а следовательно, и нормальная аминокислотная последовательность в соответствующем белке. Однако у некоторых других обратных мутантов в А-белке в 210-м положении оказался не нормальный глицин, а серин. Это наблюдение является прямым доказательством существования невидимых, мутаций , в случае которых, как это было предположено в гл. VI, мутационная замена одного аминокислотного остатка на другой остается незамеченной. Действительно, как видно из приведенного примера, некоторые замены аминокислот в первичной структуре полипептида (такие,, как замена глицина на аргинин в 210-м положении) приводят к полной потере каталитической функции А-белка триптофан-синтазы, тогда как другие замены в том же положении (такие, как замена глицина на серин) не мешают каталитической функции возникшего мутантного фермента [c.366]

    В модели структуры ДНК Уотсона и Крика предполагается, что замена одной нуклеотидной пары в нормальной нуклеотидной последовательности гена может привести к формированию мутантного фенотипа. Можно предположить, что мутация, в основе которой лежит замена одной нуклеотидной пары, должна обладать следующими свойствами 1) обратные мутации, переводящие мутантный фенотип в нормальный, должны происходить примерно с той же частотой, что и прямые 2) ей должна соответствовать определенная точка на генетической карте 3) такая мутация должна обладать способностью к рекомбинации с любыми другими точечными мутациями, за исключением тех, которые представляют собой независимые замены той же нуклеотидной пары. Некоторые из изученных Бензером г//-мутантов обладали перечисленными свойствами, другие-нет. Данные, представленные в табл. 6.2, показывают, что частота обратных мутаций к дикому типу у различных гП-мутантов, способных к рекомбинации друг с другом, сильно различается. Некоторые из г//-мутантов вполне стабильны и не ревертируют к дикому типу (т.е. не дают бляшек на Е. соН К (А.)) другие ревертируют к дикому типу с измеримыми и характерными частотами. Генетическая карта г//-мутантов, представленных в табл. 6.2, изображена на рис. 6.3. [c.163]

    Поскольку 2-аминопурин, 5-бромурацил и азотистая кислота индуцируют как прямые, так и обратные мутации, с помощью этих мутагенов нельзя получить лищь транзиции G -> АТ или АТ -> G . Гидроксил-амин, напротив, воздействует только на цитозин, переводя его в форму, способную к спариванию с аденином (рис. 20.7). Это приводит к направленным мутациям G ->AT. Гидроксиламин не способен индуцировать обратные мутации, однако такие мутации могут индуцироваться мутагенами, действующими в обоих направлениях. Описанный механизм действия 2-аминопурина подтверждает анализ аминокислотных замен белка триптофансинтетаза А Е. oli, вызываемых 2-АП-индуцированными реверсиями специфических мутаций (рис. 20.8). [c.13]

    В природных популяциях дрозофилы иногда встречаются мухи с коричневыми глазами (мутация bw). В одной популяции такие мухи составляли 5% от общего числа особен. Какова будет доля мух с мутантным фенотипом во втором поколении, если частота прямых мутаций Н-->бшЗХЮ" гамет, а обратных—4,5X10"  [c.159]

    Прямой отбор широко используется для получения ревертантов (бактерий с обратными мутациями) ауксотрофных мутантов. Ауксотрофы представляют особый класс условно летальных мутантов, не способных выживать без искусственной поддержки извне в виде добавления какого-нибудь соединения — участника обмена веществ (например, аминокислоты, витамина), которое они сами не в состоянии синтезировать. Если ауксотроф возник в результате мутации, связанной с заменой оснований, его можно ревертировать (вызвать обратную мутацию, возвращающую к исходному типу) воздействием соответствующего мутагена. Помимо истинных ревертантов может возникать множество фенотипических ревертантов , которые своим появлением обязаны мутациям в локусах, отличных от тех, которые ответственны за первоначальную мутацию Например, мутанты со сдвигом рамки часто могут ревертировать за счет вторичной компенсаторной мутации со сдвигом рамки, расположенной вблизи локуса первой мутации и восстанавливающей правильное считывание триплетов. Некоторые мутанты с заменой оснований могут ревертировать под действием вторичной мутации, происходящей в другом месте мутировавшего гена. Предполагается, что при этом вторичная мутация частично компенсирует первоначальную мутацию посредством взаимодействия аминокислот, кодируемых мутировавшими локусами гена и расположенных в двух измененных областях белковой молекулы. Мутанты с заменой оснований, в особенности [c.31]

    Частота аллеля Ai зависит исключительно (в отсутствие отбора) от частоты, с которой он мутирует к алле тю Аг, и от частоты, с которой аллель Ag мутирует обратно к аллелю Аь Поскольку эти частоты очень низки (частота обратных мутаций обычно составляет всего 0,1 частоты прямых мутаций), изменения, вносимые в популяцию одним только мутационным процессом (при равновесии Харди—Вайнберга), очень незначительны. При нормальной частоте мутаций (10 —Ю- ), для того чтобы в данной популяции половина аллелей А была заменена аллелями Аг, йотребуется от минимум 5000 до более чем 50 ООО ООО поколений. Эффект мутационного процесса тем больше, чем короче продолжительность жизни каждого поколения. Для человека 50 ООО поколений соответствуют 1—2 млн. лет, а у бактерий с их быстрой сменой поколений (порядка получаса на каждое) на столько же поколений потребуется менее трех лет. Во всех тех случаях, когда частота прямых мутаций выше частоты обратных, мутанты становятся более многочисленными, чем исходный ген, если только они не элиминируются отбором. Можно также сделать еще один вывод. Повышение частоты мутаций не вызовет никаких изменений, если только оно одинаково изменяет частоту прямых и обратных мутаций. В этом случае исходное равновесие, определяемое формулой Харди—Вайнберга, не изменится. [c.129]

    Механизм обратной связи от фенотипа к генотипу, от признака к гену действует в филогенезе через отбор фенотипов, лучше приспособленных к данным внешним условиям. При этом отбор погашает старые прямые связи от генотипа к фенотипу и утверледает новые, возникающие на основе рекомбинаций или изменения химической структуры наследственного материала (мутации) воспроизводящих клеток, и приобретает значение творческого фактора в эволюции и селекции. [c.310]

    Закон Харди — Вайнберга. В 1908 г. английский мате.матик Г. Харди и немецкий врач Н. Вайнберг независимо друг от друга установили закон, которому подчиняется частота распределения гетерозигот и гомозигот в свободно скрещивающейся популяции, и выразили его в виде алгебраической формулы. Оказалось, что частота членов пары аллельных генов в популяции распределяется в соответствии с коэффициентом разлолсения бинома Ньютона (р-Ь<7) . Закон Харди — Вайнберга вырал<ает вероятностЕ[ые распределения генотипов в любой свободно скрещивающейся популяции. Но действие этого закона предполагает выполнение ряда обязательных условий 1) популяция имеет неограниченно большую численность 2) все особи в популяции могут совершеино свободно скрещиваться 3) гомозиготные и гетерозиготные по данной паре аллелей особи одинаково плодовиты, жизнеспособны и ие подвергаются отбору 4) прямые и обратные мутации происходят с одинаковой частотой или они так редки, что ими молено пренебречь. Совершенно очевидно, что все эти условия в реально существующих популяциях невыполнимы, и закономерности, установленные Харди и Вайнбергом, правильны только для идеальной популяции. Но этот закон является основой для анализа динамики генетических преобразований, совершающихся в реальных естественных популяциях при нарушениях, вызываемых действием эволюционных факторов отбора при возникновении мутаций, ограничении численности особей и т. д. Этот закон необходим для любого изучения эволюционных процессов. [c.314]

    Концентрация аллелей в популяции не должна изменяться под влиянием прямых и обратных мутаций. Ген Л не изменяется в ген а, и наоборот. Иными словами, популяция не доллсна подвергаться давлению мутационного процесса. [c.318]

    Мутационный процесс. В любой популяции непрерывно идет мутационный процесс, в результате которого в ее генофонд вносятся все новые и новые наследственные измеиения. Мутации служат важнейшим источником наследственных изменений. Несмотря на то, что частота спонтанного мутирования одного отдельного гена очень мала, общее количество различных мутащ й в связи с огромным числом генов в организме достаточно велико. По любой паре аллелей, например А и а, мутации могут происходить в двух направлениях — прямом и обратном А—>-а и а—уА. Если-частота прямого мутирования равна частоте обратного, то эффективного изменения концентраций генов не происходит (рЛ = /а). Если же рА больше да или наоборот, то возникает мутационное-давление. Направление мутационного давления зависит от количественного соотношения прямых и обратных мутаций. [c.319]

    В заключение отметим, что трудно судить, какой механизм транзиций является основным при возникновении спонтанных мутаций у данного организма. В настоящее время удается лишь определить, к какому типу — транзиции, трансверсии, делеции, вставки — относятся точечные мутации, а также найти их относительные частоты (так, показано [59], что для системы Е. oli транзиции Г — Ц А — Т и А —Т Г —Ц составляют соответственно 19—30 и 42%, а трансверсии — больше 12%). Однако решить даже эту задачу относительно легко только в особых случаях, когда генетический факюр или специфические условия среды в сильной степени влияют на этот процесс. Обычно можно исключить некоторые механизмы как невероятные, что уда-гтся сделать двумя путями можно сопоставить генетическую эбласть и распределение частот прямых спонтанных мутаций областью и распределением частот мутаций, индуцирован-iHx мутагенами с известными свойствами, или можно инду-хировать различными мутагенами обратные мутации у спонтанных и индуцированных мутантов и этим путем определить <арактер соответствующих изменений пар оснований. [c.29]

    У вида В новая мутация может возникнуть в любой клетке, в любой ветви растения. Поскольку дочерние растения продуцируются путем почкования по широкому фронту, прямые потомки мутантной клетки могут оказаться в дочерних и внучатых растениях вместе с немутировавшими клетками, связанными между собой относительно далеким родством. В отличие от этого у вида А самый недавний общий предок всех клеток данного растения не старше той споры, которая послужила узкогорлым началом данного растения. Если эта спора содержала мутантный ген, то все клетки нового растения будут содержать этот мутантный ген. Если в споре этого гена не было, то не будет его и у всех других клеток. У вида А клетки в пределах данного растения генетически более однородны, чем у вида В (если не учитывать возникающие время от времени обратные мутации). У вида А отдельное растение представляет собой определенную генетическую единицу, заслуживающую звания индивидуума. Растения вида В генетически менее определенны и меньше заслуживают этого звания. [c.202]

    С помощью селективных сред можно также отбирать клетки-ревертанты, т. е. клетки, у которых в результате обратных мутаций, истинных или супрессорных, произошло восстановление свойств штамма дикого типа. Метод прямого отбора обладает высокой чувствительностью, поскольку позволяет выявлять редкие мутантные клетки на фоне немутировавших клеток. [c.180]

    Мутационный процесс — основа возникновения гетерогеньюсти популяции. Из-за наличия мутационного процесса трудно говорить о сухцествовании истинно чистых — гомозиготных линий в течение длительного времени. Тем не менее можно представить, что существует абсолютно гомозиготная АА) совокупость (р = 1), в которой происходит мутационный процесс А а с частотой и на гамету за одно поколение. Тогда в следующем поколении аллели А и а будут встречаться с частотами р — 1 — ии = и. Однако происходят не только прямые мутации, но и обратные с частотой V, а в популяции имеются аллели как А, так нас частотами соответственно р и q. Часть аллелей а будет превращаться в А с частотой V. Тогда изменение частоты аллели А под влиянием мутационного давления за одно поколение можно выразить как Ар = vq — ир. [c.470]


Смотреть страницы где упоминается термин Мутации прямые и обратные: [c.165]    [c.154]    [c.111]    [c.154]    [c.154]    [c.431]    [c.135]    [c.32]   
Генетические основы эволюции (1978) -- [ c.47 ]

Искусственные генетические системы Т.1 (2004) -- [ c.278 ]




ПОИСК







© 2025 chem21.info Реклама на сайте