Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидравлическое полых

    С целью увеличения степени очистки газов смачивают поверхности осаждения, вводят в газ жидкость, чем достигают увлажнения и укрупнения частиц. Укрупнение частиц достигается также обработкой газа ультразвуком [5.2, 5.58] или воздействием электрического и магнитного полей [5.64]. Гидравлическое сопротивление электрофильтров 150—200 Па. Расход электроэнергии на 1000 очищаемого газа от 0,12 до 0,20 кВт-ч. В электрофильтрах улавливается пыль с диаметром частиц более 5 мкм. В результате разделения системы Г — Т образуется газ и твердый остаток, содержащий за счет сорбции на поверхности своих частиц молекулы газообразных соединений. Санитарная очистка газов от пыли данным методом, как правило, не обеспечивается. Уловленные частицы подлежат использованию либо дополнительной переработке. [c.471]


    Для разделения системы Г —Ж применяются волокнистые фильтры из синтетических волокон. Гидравлическое сопротивление 5—60 Па, эффективность улавливания аэрозолей, туманов выше 99 %. Скорость газа 0,5—1,5 м/с. Капли тумана и аэрозоли за счет сил адгезии прилипают к поверхности ткани и по мере накопления и укрупнения стекают в приемные емкости. Обработка газов ультразвуком и в электромагнитном поле увеличивает степень очистки. Уловленная жидкость содержит —в пределах растворимости — химические соединения, находящиеся в газе, и ее использование зависит от количества в ней загрязнений. Санитарную очистку газов метод, как правило, не обеспечивает [5.64, 5.67]. [c.474]

    Стоки, образующиеся при мойке полов и оборудования, должны выпускаться в канализацию через специальные трапы, установленные в полу помещений. Производственные воды, загрязненные сероуглеродом, необходимо выпускать в наружную канализацию через цеховой сборник, снабженный гидравлическим затвором. Канализационную сеть сточных производственных вод, содержащих сероуглерод, снабжают ловушками сероуглерода, служащими одновременно и гидравлическими затворами. Места возможного образования газовоздушных смесей (гидравлические затворы, ловушки и др.) вентилируются. По всей длине наружных коллекторов загрязненных сточных вод (за ловушками сероуглерода) предусматривают гидрозатворы на расстоянии один от другого не более 300 м. Расстояние от наружных сетей канализации загрязненных стоков до наружных стен невентилируемых подвалов должно быть не менее 6 м. [c.96]

    Для абсорбционной очистки больших объемов газов, что имеет место при очистке вентиляционного воздуха и воздуха местных отсосов в химической, металлургической и других отраслях промышленности, наибольшее распространение получил форсуночный многоярусный полый скруббер. Он представляет собой цилиндрическую колонну, в нижней части которой имеется боковой подвод очищаемого воздуха, по высоте колонны располагается несколько ярусов форсунок, вьпне - капле-уловитель и далее труба рассеяния. Достоинствами полых скрубберов являются малое гидравлическое сопротивление, большие расходы воздуха (существующие аппараты имеют расходы от 4000 м /ч до 1 млн. м /ч), высокие эксплуатационные качества, обеспечиваемые простотой его конструкции. Наиболее уязвимым местом до недавнего времени бьш жалюзийный каплеуловитель, где в зоне низких скоростей происходило отложение твердых осадков. От этого недостатка избавлен центробежный каплеуловитель [360], скорость воздуха в котором составляет 10-18 м/с, что обеспечивает самоочищение от осадков. [c.249]


    Наиболее полные экспериментальные исследования процесса массообмена в полых распылительных скрубберах было проведено Фиалковым с соавторами [363, 367-371]. Целью исследований был подбор типа форсунок и их расположение в колонне, величина плотности орошения и скорости воздуха при условии ограниченного гидравлического сопротивления аппарата, а также получение эмпирической формулы для расчета скруббера. Проводилась очистка воздуха от HF, СЬ, SOj водой, содовым и щелочными растворами и растворами кислот. При обработке экспериментальных данных определялся объемный коэффициент массопередачи -К а эквивалентного колонного аппарата, работающего в режиме идеального вытеснения при постоянстве по высоте колонны. При этом предполагалось, что равновесная концентрация с на границе раздела газ—жидкость равна нулю. Это допущение применимо лишь для очень хорошо растворимых газов. В соответствии с уравнением (5.4) экспериментальное значение объемного коэффициента массопередачи рассчитьшалось по формуле [c.250]

    Полы во взрывоопасных помещениях следует выполнять из несгораемых материалов, не образующих при ударе искр. Металлические площадки на рабочих местах покрывают резиновыми ковриками или дорожками. Полы помещений, в которых находятся легковоспламеняющиеся и горючие жидкости, выполняют из несгораемых материалов, не впитывающих жидкостей. Полы должны иметь уклон для стока жидкостей в промышленную канализацию через гидравлический затвор. [c.123]

    Центробежные форсунки с завихрителями. При орошении полых колонн используют не только гидравлически гладкие центробежные форсунки, но и центробежные форсунки, снабженные вкладышами — завихрителями разной конструкции, создающими такой же, как и у гладких форсунок, полый (незаполненный каплями внутри) конический факел разбрызгивания. Применение вкладышей обусловлено тем, что число, направление и площадь живого сечения их каналов определяет (при данном диаметре выходного отверстия сопла) корневой угол раскрытия факела (см. выше), а также пропускную способность форсунки при ее конструировании. Наибольшее распространение получили вкладыши, выполняемые в виде червячного (с числом заходов от одного до четырех, а иногда и более) завихрителя очень небольшой высоты (см. рис. 81) [увеличение высоты вкладыша и протяженности его витков способствует лишь возрастанию потерь напора и падению момента закрутки], а также вкладыши в виде дисков (рис. 88) или грибков (рис. 89, а), а иногда и кольцевых венцов (рис. 93, а—г) с тангенциальными прорезями, направляющими жидкость [c.236]

    В процессе эксплуатации газотурбинных двигателей на форсунке, головке и стенках жаровой трубы камеры сгорания может образовываться мягкий сажистый или коксообразный нагар (рис. 4.43). При отложении нагара (нагарообразовании) изменяются гидравлические характеристики форсунок, возникают большие температурные градиенты в материале камеры сгорания, деформируется температурное поле газа перед турбиной, отмечаются и другие нежелательные явления [152, 153]. Вследствие этого возможно коробление и растрескивание стенок жаровых труб и прогар сопловых лопаток турбины. [c.149]

    На рис. 5.13 представлены расчетные значения профилей давления и потока в дренажном пространстве модуля с полыми волокнами для трех вариантов движения потоков прямо-, противо- и перекрестного тока. Из рисунка видно, что в случае противотока потери давления в дренажном пространстве наименьшие. Это объясняется тем, что основная масса пермеата формируется на коротком участке вблизи места ввода исходной смеси на разделение. При прямотоке основная масса проникшего через мембрану газа образуется на максимальном удалении от места вывода пермеата, следствием чего являются большие гидравлические потери. Однако основная масса пер- [c.180]

    Дренажи мембранных аппаратов. Эффективность всех рассмотренных конструкций, кроме аппаратов с полыми волокнами, в значительной степени зависит от материала дренажей, служащих для восприятия высокого давления и отвода фильтрата. К материалам дренажей предъявляются следующие требования 1) высокая пористость с целью возможно более полного использования рабочей площади прилегающих мембран и снижения гидравлического сопротивления в перпендикулярном и параллельном к плоскости мембраны направлениях 2) достаточная жесткость, т. е. способность воспринимать высокое давление в течение длительного времени, сохраняя приемлемые гидравлические характеристики 3) способность формоваться в тонкие листы и трубки 4) химическая стойкость в фильтрате и микробиологическая инертность 5) невысокая стоимость материала, занимающего до 50% объема аппарата (см. также стр. 273). [c.167]

    Во многих аппаратах для тепловых и массообменных процессов каналы, по которым проходит жидкость или газ, имеют полое сечение (круглое или прямоугольное). Гидравлическое сопротивление таких аппаратов рассчитывают по тем же формулам что и сопротивление трубопроводов. Осадки на филь трах, гранулы катализаторов и сорбентов, насадки в абсорбционных и ректификационных колоннам и т. п. образуют в аппаратах пористые или зернистые слои II—3]. При расчете гидравлического сопро тивления таких слоев можно использовать зависи мость, на первый взгляд, аналогичную уравнению для определения потери давления на трение в трубопроводах  [c.11]


    Выравнять поля скоростей в диффузоре можно также с помощью системы направляющих лопаток—дефлекторов, которые отклоняют часть потока вблизи входа из средней области диффузора к его стенкам, вследствие чего зона отрыва уменьшается илн полностью устраняется [44—46, 57, 63 1. В результате улучшается распределение скоростей и снижаются гидравлические потери. [c.35]

    Неоднородность течения за распределительным устройством практически ие зависит от неравномерности поля скоростей в подводящем патрубке. Исследовались прямые трубы, колено (r/Do = О и г/Dq = 0,5) и закрученный поток. Коэффициент гидравлического сопротивления tp. = [c.292]

    В электромагнитных вибровозбудителях колебания возникают в результате взаимодействия переменного магнитного потока, создаваемого в обмотках с якорем из ферромагнитного материала, закрепленного на упругих элементах. В электродинамическом вибровозбудителе используются пондеромоторные силы, действующие на проводники с переменным током в магнитном поле. Возвращающая сила, как и в электромагнитных системах, создается специальными упругими элементами. В гидравлических вибровозбудителях используется или пульсирующий источник рабочей жидкости или ее постоянный поток прерывается специальным золотниковым устройством. По принципу [c.47]

    Подвод обеспечивает плавное изменение скорости жидкости перед входом в колесо с минимальными гидравлическими потерями и осесимметричное поле входной скорости, необходимое для создания установившегося потока в колесе. Для одноступенчатых насосов с односторонним всасыванием осевой подвод (рис. 1.4, и) является предпочтительным из-за простоты и эффективности. Наличие в подводе колена с небольшим радиусом кривизны приводит к ухудшению действия подвода. Боковой подвод применяется в насосах с двусторонним входом и в горизонтальных многоступенчатых насосах с проходным валом. Однородное поле скоростей при входе в колесо обеспечивает полу-спиральная или сердцевидная форма канала (рис. 1.4, к). [c.15]

    Чтобы нефтепродукты не растекались за пределы помещения, в дверных проемах делают пороги высотой не менее 0,15 м с пандусами. Полы в зданиях для хранения нефтепродуктов устраивают с уклоном для стока жидкости к специальным приемникам, соединенным через гидравлические затворы с промышленно-ливневой канализацией. [c.188]

    Схема //. Для переключения газовых потоков можно использовать стандартную запорную арматуру. Однако оно сопровождается повышением адиабатического разогрева смесей, пригодных для переработки по данной схеме. При смене направления фильтрации сохраняются переменные температурные поля в газоходах и переключающей арматуре. Кроме того, увеличение количества катализатора приводит к росту гидравлического сопротивления реакторного узла. [c.328]

    Недостаток метода состоит в том, что он приводит к монотонному полю деформаций сыпучей среды без скачка скорости на границе с зоной стока. Этот недостаток можно устранить, если ввести в уравнения (38)—(40) компоненты вектора дополнительного напряжения, отражающего действие распорной структуры в области основного динамического свода. Однако и без этих уточнений уравнения (38) и (39) позволяют объяснить многие особенности движения сыпучих материалов, в частности аномальную величину угла динамического откоса , образование зоны избыточного давления при выпуске сыпучего материала из аппарата с верхней уравнивающей гидравлической трубкой, возрастание давления при эксцентричном выпуске, эффективность продольного перемешивания, особенности поля скоростей при выпуске гранулированного теплоносителя из слоя переменной высоты и др. [c.124]

    В аппаратах больших размеров неравномерность распределения газовых потоков возникает вследствие образования внутренних локальных зон с неодинаковой порозностью зернистого слоя. Размеры этих зон тем больше, чем больше поперечные размеры слоя поэтому наиболее эффективным способом выравнивания поля скоростей в промышленных аппаратах является разделение контактной зоны на ряд параллельно соединенных элементов, а также искусственное увеличение обш,его гидравлического сопротивления с помощью решеток, диафрагм и др. [c.133]

    Сравнение коэффициентов вытеснения для одних и тех же нефтей, полученных при вытеснении нефти водой в центробежном поле, с результатами, полученными на гидравлической установке (табл. 48, 49), подтверждают мнение авторов [43, 174, 139] о возможности применения центробежного метода для оценки полного коэффициента вытеснения нефти. [c.200]

    При приемке двойников обращают внимание на маркировку пробок и корпуса и проверяют, чтобы на соприкасающихся поверхностях пробок и гнезд, а также на внутренней поверхности отводов в местах соединения с трубами не было забоин, рисок и др. Печные двойники должны иметь паспорт с указанием о проведенном гидравлическом испытании. Двойники и концы труб перед установкой промывают керосином и затем вытирают насухо для удаления пленки масла, так как наличие масляной пленки на соприкасающихся поверхностях труб и двойников может привести к возникновению неплотности в вальцованном соединении. Трубные решетки и подвески должны быть проверены на соответствие размеров отверстий под трубы наружным диаметрам труб. Если диаметр отверстия меньше, чем требуется с учетом поля допусков, приходится растачивать такие отверстия, используя турбинки с наждачным кругом. Края отверстий не должны иметь неровностей и заусениц, которые могут повредить зачищенные концы труб при их протаскивании через отверстия решеток и подвесок. [c.253]

    Поля скоростей в больших промышленных аппаратах (а) могут быть проанализированы непосредственным замером распределения скоростей в малой, геометрически подобной модели (м) с засыпкой зерен меньшего, чем в основном аппарате, размера. При таком гидравлическом моделировании [88] необходимо, чтобы критерии Рейнольдса для зернистого слоя в аппарате Rea, а и модели Неэ, м находились в области, охватываемой одинаковым законом сопротивления (прн / = idem). [c.72]

    Камера установлена на постаменте высотой 20 м. На этом же постаменте смонтированы металлоконструкции 7 с оборудованием для гидравлического разрушения кокса. Оборудование включает системы враш,ения и вертикального перемещения гидроинструмента. Гидрорезак, 5, снабженный соплами для бурения и резки, прикреплен к полой штанге 12 квадратного сечения, подвешенной через вертлюг 13 к блоку 14 талевой системы последняя обеспечивает вертикальное перемещение гидрорезака. Снизу по стояку 9 и шлангу 10 через вертлюг и штангу к гидрорезаку поступает вода под давлением 16—25 МПа. Штанга приводится [c.240]

    Оценка гидравлического сопротивления полых колони по приводимым в справочниках даиныл затруднена тем, что иа величину Ар заметно влияют факелы разбрызгивания жидкости (их количество, нанравление и мощность), степезгь насыщения орошаемого объема каплями п брызгами, а иногда и стекающие по стенам аппаратах в местах ввода и вывода газа жидкостные по- [c.216]

    Среди применяемых в полых колоннах центробежных ме.ханических форсунок можно выделить группу форсунок с гидравлически гладким профилем. Эти форсунки характеризуются отсутствием вкладышей (в виде червячных и иных завихрителей) для закручивания потока в камере форсунки, что делает их наиболее пригодными для pa6oTiji иа загрязненных жидкостях, [c.231]

    На Батумском и Красноводском НПЗ внедрен более экономичный, бесподдонный вариант розлива в бумажные мешки [215, 216]. Отличие его от общепринятого заключается в транспортировании горячего жидкого битума к бумажным мешкам, а не наоборот — мешков к разливочному устройству. При таком розливе используют бункер, представляющий собой открытый металлический ящик, разделенный внутри на 6— 8 секций — сосудов с конусообразными днищами, внутри которых находятся сливные патрубки, закрываемые клапанами. Пространство между секциями может заполняться теплоносителем (газойлем) для разогрева бункера перед началом работы. Сам бункер может быть снабжен наружной рубашкой для разогрева паром. Бункер устанавливают на вилы автопогрузчика, гидравлическую систему управления сливными клапанами бункера соединяют с гидравлической системой погрузчика. Бункер подают на погрузчике под сливное устройство и одновременно заполняют все секции бункера. Для равномерного заполнения секций в верхней их части проделаны отверстия, по которым битум перетекает из секции в секцию. Далее бункер транспортируют на площадку залива мешков, здесь непосредственно на пол в разборную обрешетку устанавливают 6—8 мешков (по числу секций в бункере). С помощью гидравлической системы бункер поднимают над мешками, клапаны открываются водителем также с помощью гидравлической системы, и битум сливается в мешки. После остывания битума обрешетку с группы мешков снимают, эту группу захватывают гидравлическим захватом другого погрузчика и транспортируют к месту погрузки в вагоны. [c.148]

    Продувочные газы циклических процессов обычно находятся под высоким (до 5,0—10,0 МПа) давлением, поэтому разность давлений — движущая сила массопереноса через мембрану — может быть большой. Гидравлическое сопротивление мембранной аппаратуры в этом случае существенной роли не играет и выбор конструкции определяют другие параметры, в основном плотность упаковки мембран. Поэтому наибольщее распространение в установках извлечения водорода нашли модули на полых волокнах, например мембранный модуль Пермасеп (рис, 8.3) [25]. [c.276]

    В установках очистки природного и нефтяного газа наибольшее распространение получили мембранные аппараты на основе рулонных элементов, имеющие относительно высокую (до 1000 м /м ) плотность упаковки мембран и небольшое (по сравнению с модулями на основе полых волокон) гидравлическое сопротивление. Например, фирма Дельта Инджиниринг разработала процесс Делсеп очистки природного и нефтяного газов с использованием рулонных элементов с асимметричной ацетатцеллюлозной мембраной Гасеп [13, 61—63]. На рис. 8.10 [c.287]

    Высо-копроизводительные мембраны на основе полиоргано-силоксанов имеют сравнительно низкий фактор разделения, поэтому (кроме мембраны Р-11) широкого применения в мембранных аппаратах разделения воздуха не нашли. Исключение составляет композиционная мембрана в виде полых волокон Монсанто , в которой селективность разделения определяется материалом матрицы (полисульфон), в то время как сплошной слой (пол1иорганосилоксан) определяет производительность мембраны. Эта мембрана, как впрочем и другие в виде полых волокон (например, высокоселективная мембрана на основе поли-эфиримида), широкого промышленного применения в процессах разделения, целевым продуктом которых является обогащенный до 35—60% (об.) кислородом поток, пока не получила. Объясняется это, очевидно, высоким гидравлическим сопротивлением модулей с полыми волокнами. Однако в технологических процессах, протекающих при повышенных давлениях [например, при получении в качестве целевого продукта технического — до 95% (об.) — азота], использование аппаратов на основе полых волокон оказывается, учитывая высокую плотность упаковки, эффективным. [c.308]

    Адсорберы кольцевого типа. Вертикальные адсорберы, показанные на рис. IX. 15 и IX. 16, представляют собой полый цилиндр, в который помещается адсорбент. Они конструктивно сложнее рассмотренных выше адсорберов с плоским слоем, но благодаря большому иоп ечному сечению шихты более компактны и имеют большую производительность при относительно невымком гидравлическом сопротивлении.  [c.158]

    Преимуществами процессов очистки масел в электрическом поле являются их непрерывность, меньший объем электроочистителей по сравнению с отстойниками, отсутствие движущихся деталей, характерных для центробежных очистителей, постоянство пропускной способности и гидравлического сопротивления, отсутствие потерь масла с загрязнениями, возможность полной автоматизации. В то же время для такой очистки требуются довольно сложная аппаратура и значительные мощности, что во многих случаях затрудняет применение этого метода. Процессы очистки масел в неоднородном электрическом поле высокого напряжения, являющиеся наиболее перспективными для практики, в должной степени не отработаны и нуждаются во всесторонней эксплуатационной проверке. [c.177]

    Фильтр-пресс может быть укомплектован гидравлическим зажимом (рис. 10.3), более прогрессивным и безопасным, чем электромеханический. Гидравлический зажим состоит из гидроцилиндра 2, полого плунжера 3, размеш,енного в нем неподвижного штока 4 с порцшем, сташтны 6 и распределите.льного устройства 5. Плунжер свободным концом закреплен в нажимной плите и перемещается в.месте с иен при прямом ходе (давление в полости цилиндра до 10 МПа) и прн обратном ходе (давление в полости плунжера 1 МПа). В полость плунжера жидкость поступает через нолый шток. В рабочем положении плунжер фиксируется гайкой 1, которая навинчивается на плунжер до упора с гидроцилиндром. [c.291]

    Как известно, простейшая форма связи теплоотдачи и гидравлического сопротивления, данная в аналогии О. Рейнольдса, выполняется только при соблюдении подобия полей температуры и скорости, когда описываюшие их уравнения движения и энергии одинаковы. Эти условия выполняются при турбулентном теплообмене в плоском пограничном слое без градиента давления при равенстве единице молекулярного и турбулентного чисел Прандтля, когда распределение продольной составляющей скорости и профиля температуры в потоке описываются идентичными уравнениями. Отклонение от этих условий (наличие градиента давления или отличие числа Рг от 1) приводит к нарушению аналогии Рейнольдса. Тем более эта аналогия не выполняется для сетчато-поточных каналов сложной формы, определяющих трехмерную структуру потока. [c.358]

    Отливки из стали марок 0Х18Н9ТЛ и 10Х18Н12МЗТЛ не должны обладать склонностью к межкристаллитной коррозии, что подлежит проверке в соответствии с ГОСТ 6032—75. Каждая полая отливка должна подвергаться гидравлическому испытанию пробным давлением по ГОСТ 356—68. [c.69]

    Вследствие резкого возрастания гидравлического сопротивления газовый поток растекается по поверхности слоя от центра к периферии. В результате инжектирующего действия этого по тока в поверхностных участках центральной части слоя создается зона низких скоростей или даже зона со встречным потоком гдза. Поэтому важной задачей изучения поля скоростей в надслойном 9 fSl  [c.131]

    Уравнение (2.65) содержит три составляющие полной раяности давлений в двухфазном потоке. Первая из них связана с преодолением сил трения, вторая — с затрата ми потенциальной энергии давления на ускорение потока и третья — с преодолением сил поля земного тяготения, аналогично тому как это делается и для однофазного потока. Для однофазного потока задача упрощалась в связи с тем, что без ущерба для точности решения можно Рис. 2.7. К определению было принять постоянными по сечению гидравлического сопротив- давлениеР и плотность жидкости р . Как леиия двухфазного потока, было показано в предыдущем разделе решение задачи было связано с определением профиля скорости жидкости по сечению потока, необходимого для интегрирования уравнения по /. [c.80]

    Результаты испытаний опытных образцов синтезированных поли-а-олефинов в композициях смазочных масел (АО Уфанефтехим ) подтвердили возможность применения полибутенов в качестве вязкостных присадок для гидравлических (ММ 1500 -14000) и моторных (ММ 14000 - 20000) масел, основы для получения синтетических и полусинтетическзгх масел (ММ 350 - 500), а также исходных продуктов для синтеза сукцинимидных присадок (ММ 1000 - 1200). [c.143]

    Гидродинамические неоднородности могут быть как внешними, так и внутренними. К внешним можно отнести возникающие в объемах реакторов отрывные течения и вихреобразования потоков из-за несовершенства конструкций внутренних устройств. Такпе неоднородности в слое могут быстро затухать [3—5], однако в ряде случаев генерируемые ими неравномерности химического превращения приводят к проникновению в глубь слоя неоднородностей температурных и концентрационных полей, что существенно снижает эффективность процесса [6—8]. Колебания газовой нагрузки в системе, рост гидравлического сопротивления слоя из-за отложений в нем пыли, механические вибрации реактора, приводящие к частичной ломке и истиранпю частиц катализатора, п другие воздействия способствуют неравномерной объемной усадке слоя с образованием каверн, пустот, свищей и т. п. [9, 10]. В последнее время опубликованы данные о неблагоприятном влиянии на протекание каталитических процессов частых пусков реакторов после их внеплановых остановок. Слой катализатора при этом испытывает периодические тедшератур-ные расширения—сжатия, которые приводят к неконтролируемому уплотнению слоя. [c.24]

    Ведено в работе Идельчика [6]. Наиболее распространенной схемой ввода потока в аппаратах большого диаметра является кольцевая (рис. 136), отличаюш,аяся компактностью по высоте реактора и относительно невысоким гидравлическим сопротивлением. Коэффициент сопротивления перфорированной выравниваюш ей решетки, необходимой для достижения достаточной однородности поля скоростей потока, определяют по формуле [c.263]


Смотреть страницы где упоминается термин Гидравлическое полых: [c.129]    [c.516]    [c.216]    [c.247]    [c.267]    [c.32]    [c.195]    [c.200]    [c.85]    [c.214]    [c.11]   
Основные процессы и аппараты химической технологии (1983) -- [ c.11 ]




ПОИСК







© 2024 chem21.info Реклама на сайте