Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранные процессы разделения аппараты

    В установку мембранного разделения газовых смесей кроме модулей входят компрессоры и системы предварительной подготовки исходной смеси. Группу модулей, включенных параллельно и связанных единым каркасом, можно рассматривать как мембранный разделительный аппарат. Более полное разделение смеси, предусматривающее извлечение нескольких компонентов или высокую степень чистоты целевого продукта, осуществляют в несколько стадий. Группа модулей, обеспечивающих частичное разделение смеси на одной стадии процесса, образует ступень разделения. Вся газоразделительная установка представляет собой каскад ступеней с достаточно разнообразными схемами циркуляции потоков. Методы расчета таких систем в принципе идентичны разработанным для других многостадийных массообменных процессов. Следует отметить, что оптимизация многостадийного процесса в целом и процесса разделения в отдельной ступени и модуле взаимосвязаны. При этом необходимо получить показатели, характеризующие массообменное и энергетическое совершенство и экономическую эффективность мембранного процесса, сопоставимые с аналогичными показателями при использовании альтернативных методов разделения (прежде всего низкотемпературной ректификации). [c.159]


    Детальное технико-экономическое сравнение двух способов мембранного процесса разделения провел У. Вернер с сотр. на примере обогащения воздуха кислородом [31—33]. Проведенный ими на основании экспериментальных данных (мембранная колонна высотой 14,4 м на основе полых волокон диаметром 2 мм суммарной поверхностью мембран 2,5 м ) и теоретических расчетов анализ показал, что применение принципа мембранной ректификации позволяет, кроме всего прочего, экономить и на поверхности мембран в устаиовках (по сравнению с многоступенчатыми установками с рециркуляцией). Причем разделение мембран в колонных аппаратах выгодно проводить вплоть до относительно высоких концентраций целевого продукта (кислорода) в пермеате (рис. 6,21). [c.227]

    Классификация. Хим.-технол. процесс в целом - это сложная система, состоящая из единичных, связанных между собой элементов и взаимодействующая с окружающей средой. Элементами этой системы являются 5 групп процессов 1) механические - измельчение, грохочение, таблетирование, транспортирование твердых материалов, упаковка конечного продукта и др. 2) гидромеханические - перемещение жидкостей и газов по трубопроводам и аппаратам, пневматич. транспорт, гидравлич. классификация, туманоулавливание, фильтрование, флотация, центрифугирование, осаждение, перемешивание, псевдоожижение идр. скорость этих процессов определяется законами механики и гидродинамики 3) тепловые - испарение, конденсация, нафевание, охлаждение, выпаривание (см. также Теплообмен), скорость к-рых определяется законами теплопередачи 4) диффузионные или массообменные, связанные с переносом в-ва в разл. агрегатных состояниях из одной фазы в другую,- абсорбция газов, увлажнение газов и паров, адсорбция, дистилляция, ректификация, сушка, кристаллизация (см. также Кристаллизационные методы разделения смесей), сублимация, экстрагирование, жидкостная экстракция, ионный обмен, обратный осмос (см. также Мембранные процессы разделения), электродиализ и др. 5) химические. Все эти процессы рассматриваются как единичные или основные. [c.238]

    Используя аналитический аппарат термодинамического анализа и численный метод расчета массообмена в мембранном модуле (см, гл. 4), исследуем эффективность мембранного процесса разделения бинарных смесей на примере плоскокамерного модуля. [c.259]

    Накопленный за последние годы опыт создания и эксплуатации промышленных установок, а также обширный экспериментальный материал по исследованию обратного осмоса и ультрафильтрации позволяют автору критически рассмотреть достоинства и недостатки этих методов, сопоставить их с другими методами разделения, а также описать физико-химическую сущность и основные закономерности обратного осмоса и ультрафильтрации, что позволило разработать принципы расчета мембранных процессов и аппаратов. [c.9]


    Наиб, распространенная форма М. р.-пленка, формуемая на машинах ленточного или барабанного типа. Для повышения мех. прочности и стабильности формы изготовляют на пористых подложках, напр, тканях, сетках, нетканых материалах. Пленочные М. р. используют в плоскокамерных аппаратах (типа фильтр-пресса) и рулонных тонкие полимерные пленки осаждают на внутр. пов-сти пористых трубок (неск. штук собирают в одном корпусе) полые волокна укладывают параллельно или под углом друг к другу в пластмассовом корпусе н склеивают в торцевых частях (см. также Мембранные процессы разделения). [c.32]

    Р.-один из самых энергоемких хим.-технол. процессов. Поэтому в хим. произ-вах все чаще применяют альтернативные процессы и методы разделения. К ним относят испарение через мембрану (см. Мембранные процессы разделения), осуществляемое в аппаратах пленочного типа противоточную кристаллизацию с непрерывным мас сообменом (экономия энергии достигается благодаря тому, что теплота плавления разделяемых ВгВ, как правило, существенно меньше, чем теплоты их парообразования см. также Кристаллизационные методы разделения смесей) и др. Однако, несмотря на все большее распространение этих и иных альтернативных процессов и методов, Р. по-прежнему сохраняет свое значение в хим. отраслях пром-сти, особенно в нефтепереработке и нефтехимии. [c.235]

    Мельницы 1/707, 774, 1203 2/146, 339, 333-357 3/146, 630, 982, 991 4/139, 180, 763 3/363 Мельхиоры 2/948, 1330-1333 3/8 Мембранные процессы разделения 3/38, 39-44, 35,36, 420 1/468, 772 2/1299, 1300 3/473, 474, 924. См. также Мембраны аппараты 3/43-45 газов 1/798 2/1300 3/42,43, 53, 36, [c.645]

    Основными факторами, существенно влияющими на скорость и селективность мембранных процессов разделения, являются концентрационная поляризация, рабочее давление и температура, гидродинамические условия внутри мембранного аппарата, природа и концентрация разделяемой смеси. [c.433]

    Справочник посвящен процессам и аппаратам химических технологий. Во второй части тома рассматриваются процессы и аппараты, которые являются традиционными для химических и смежных с ними производств. Это механические процессы — классификация твердых частиц по размерам и извлечение их из потоков жидкости и газа тепло- и массообменные процессы — выпаривание, сушка, адсорбция, экстракция из жидкости и твердого тела, кристаллизация реакционные процессы, происходящие в различных химических реакторах и печах мембранные процессы разделения жидкостей и газов. Новым для справочной литературы является раздел, посвященный надежности аппаратов и технологических установок и качеству получаемых продуктов. [c.2]

    По сравнению с предыдущими книгами автора (Мембранные процессы разделения жидких смесей, Химия , 1975 Обратный осмос и ультрафильтрация, Химия , 1978) основное внимание в данной книге уделено физико-химической сущности баромембранных процессов и их расчету, а также выбору и расчету мембранных аппаратов и установок для проведения этих процессов. В настоящей книге автором использована часть материала, изложенного в книге Обратный осмос и ультрафильтрация . [c.10]

    В сравнительно небольшой по объему книге не представилось возможным подробно осветить и раскрыть все аспекты мембранных методов разделения жидких смесей. По-видимому, на данном этапе развития мембранных процессов и аппаратов в этом и нет необходимости, тем более что настояш,ая книга является первой в названной области и ее основная задача состоит в ознакомлении читателя с основами рассматриваемой проблемы. [c.201]

    В нашей стране работы в области разделения и концентрирования жидких и газовых смесей находятся в стадии лабораторных исследований и опытно-промышленных испытаний. В ближайшем будущем предполагается организация промышленного выпуска полупроницаемых мембран с заданными характеристиками, создание рациональных конструкций мембранных аппаратов, разработка методов технологического расчета оптимизации и управления мембранными процессами и аппаратами. [c.132]

    Следует отметить, что схема организации одноступенчатого процесса мембранного разделения зависит от конкретной технологической задачи. Чем меньше число модулей в установке и больше единичная площадь мембран в этих аппаратах, тем меньше габаритные размеры и стоимость установки, более проста и надежна ее эксплуатация. В то же время большое число модулей одного типоразмера с малой единичной площадью мембран обеспечивает большую гибкость в работе установки, [c.197]

    Автор книги — доктор технических наук профессор Юрнй Иосифович Дытнерский является ведущим специалистом -в области мембранных методо-в разделения жидких смесей. Исследования проблем мембранной техники и технологии, впервые в нашей стране начатые Ю. И, Дытнерским в 1960 г., продолжаются под его руководством на возглавляемой им кафедре процессов н аппаратов МХТИ им. Д. И. Менделеева. [c.4]


    За последние годы мембранные процессы все более проникают в различные отрасли народного хозяйства. Разнообразие областей применения (в медицине —для очистки крови, в нефтепереработке —для обезвоживания масел подробнее см. главу VI) и задач, которые решаются или могут быть решены с помощью обратного осмоса и ультрафильтрации (разделение, очистка, концентрирование и т. д.), определяет необходимость создания многочисленных вариантов аппаратурно-тех-нологического оформления этих процессов, на основе широкого арсенала мембранных аппаратов, полупроницаемых мембран, конструкционных материалов. [c.109]

    К аппаратам промышленных масштабов предъявляются требования, определяемые условиями их изготовления и эксплуатации. Прежде всего, промышленные аппараты для осуществления мембранных процессов, в том числе и для обратного осмоса и ультрафильтрации, должны иметь большую рабочую поверхность мембран в единице объема аппарата. Они должны быть простыми в сборке и монтаже ввиду необходимости периодической смены мембран. При движении жидкости по секциям или элементам аппарата она должна равномерно распределяться над мембранной поверхностью и иметь достаточно высокую скорость течения для снижения влияния концентрационной поляризации (см. стр. 170). При этом перепад давления в аппарате должен быть по возможности небольшим. Кроме того, необходимо выполнение всех требований, связанных с работой аппаратов при повышенных давлениях обеспечение механической прочности, герметичности и т. д. Создать аппарат, который в полной мере удовлетворяет всем требованиям, по-видимому, невозможно. Поэтому для каждого конкретного процесса разделения следует подбирать конструкцию аппарата, обеспечивающую наиболее выгодные условия проведения именно этого процесса. [c.115]

    Расчет аппарата с полупроницаемой мембраной. Процессы мембранного разделения обычно проводят при постоянной температуре и постоянном давлении Р. Известны производительность по исходному раствору Ьо кг/ч и состав раствора хо кг/кг. Расчет мембранного аппарата сводится к определению поверхности мембраны Р м (рис. 17.13). [c.440]

    Аппараты типа фильтрпресс отличаются простотой изготовления, удобством монтажа и эксплуатации, возможностью быстрой замены мембран. В этих аппаратах процесс разделения проводится при сравнительно высоких скоростях раствора (вследствие незначительного зазора между соседними мембранами), что позволяет существенно снизить влияние концентрационной поляризации. Поэтому аппараты типа фильтрпресс особенно перспективны для проведения ультрафильтрационных процессов. [c.123]

    Даже краткий и далеко не полный перечень областей применения обратного осмоса и ультрафильтрации позволяет сделать вывод о том, что методы мембранной технологии начинают проникать во многие отрасли народного хозяйства. Однако мы сейчас еще находимся на ранней стадии развития этого нового направления науки и техники, и технологам еще много нужно поработать, для того чтобы определить наиболее рациональные области и способы применения мембранных процессов. Возможность сочетания методов мембраиного разделения с известными процессами, получение новых химически и термически стойких мембран, разработка принципиально новых мембранных процессов и аппаратов, а также возникновение новых технологических потребностей обеспечат дальнейшее проникание и распространение мембранных методов во все сферы пра ктической деятельности человека. [c.328]

    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    В этом разделе рассмотрены методы расчета основных технологических параметров процессов разделения жидких смесей обратным осмосом и ультрафильтрацией, значения которых необходимо знать при расчете мембранных аппаратов, а также элементы расчета этих аппаратов. [c.224]

    Рассмотрим [134] напорный канал аппарата (например, рулонного типа), состоящего из нескольких последовательно соединенных элементов (рис. У-Ю), с двумя проницаемыми стенками и турбулизатором между ними (на рис. У-Ю турбулизатор не показан). Исходный раствор входит в канал в точке х = Ь и движется вдоль канала, причем часть раствора в виде фильтрата проходит через мембрану с постоянной скоростью Wм. Полагаем, что величина пропорциональна рабочему давлению (т. е. считаем, что гидравлические потери малы по сравнению с рабочим давлением) и осмотическое давление в процессе разделения меняется незначительно. Этот случай, например, может встретиться на практике при обессоливании воды с начальной концентрацией до 3—5 г/л (при более высоких концентрациях соли в исходной воде при расчете [c.269]

    Сущность процесса мембранного разделения заключается в следующем (рис. 17.1). Разделяемая в аппарате 1 смесь вводится в соприкосновение с полупроницаемой мембраной 2 с одной стороны, и вследствие особых свойств мембраны прошедший через нее фильтрат обогащается одним из компонентов смеси. Процесс разделения может происходить настолько полно, что в фильтрате практически не содержатся примеси тех компонентов смеси, которые задерживаются мембраной. Не прошедшая через мембрану смесь компонентов в виде концентрата выводится из аппарата. [c.427]

    Процесс разделения с помощью жидких мембран может быть осуществлен в аппаратах для проведения жидкостной экстракции, например в распылительной колонне или в роторно-дисковом экстракторе. Разрушение эмульсии после завершения процесса разделения с целью выделения из внутренней (дисперсной) фазы перенесенного вещества может быть осуществлено термическим или электростатическим методом. [c.323]

    Диафильтрация-это способ проведения баромембранного процесса разделения жидких систем (чаще ультрафильтрации), используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в разделяемый раствор вводят растворитель, расход которого обычно равен количеству отбираемого пермеата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в пермеат, и таким образом в аппарате происходит очистка компонента, по отношению к которому мембрана высокоселективна (ВС). С помощью диафильтрации можно практически нацело разделить компоненты раствора. Если же на мембране с подобными характеристиками проводить, например, обычную ультрафильтрацию, то концентрация ВС в исходном растворе повысится, а концентрация НС останется практически неизменной. [c.329]

    Для проведения процессов мембранного газоразделения обычно применяют полимерные пленки и половолоконные мембраны, причем последние-в аппаратах высокой производительности. Для проведения процессов разделения газовых смесей используют аппараты, которые по конструкции принципиально не отличаются от мембранных аппаратов для жидкофазных процессов разделения. [c.332]

    За время, прошедшее после выхода в свет 2-го издания, достигнуты значительные успехи в разработке и создании новых интенсивных процессов и высокопроизводительных аппаратов. Б связи с этим при подготовке 3-го издания учебника в него внесены задуманные А. Н. Плановским дополнительные главы по химическим процессам, кристаллизации, сублимации, ионообменному и мембранному разделению (что делает курс процессов и аппаратов химической технологии в основном завершенным и соответствующим современным требованиям подготовки инженеров-механиков). Дальнейшее развитие и углубление получила предложенная А. Н. Плановским плодотворная идея изложения всех процессов (за исключением механических) на основе единых кинетических закономерностей. Стиль, методология и структура учебника оставлены без изменения. [c.7]

    Разделение через мембраны. Б этом случае Г.р. реализуется благодаря разл. проницаемости компонентов газовой смеси через разделит, мембраны (пористые и непористые перегородки). Эффективность мембраны определяется ее уд. производительностью, т.е. кол-вом газа, прошедшего через пов-сть мембраны за соответствующее время. Аппараты для мембранного Г. р.-замкнутые объемы, разделенные мембранами на две полости. Движущая сила процесса-поддерживаемая постоянной разность парциальных давлений (или концентраций) газов по обе стороны мембраны. В зависимости от назначения мембраны изготовляют из разл. материалов (стекло, металлы, полимерные материалы), к-рым придают форму пластин, трубок, полых волокон, капилляров. Напр., для выделения Hj из продувочных газов произ-ва NH3 используют трубки из сплава Pd для тех же целей применяют полые волокна из полиариленсульфонов. Воздух, обогащенный О , получают с помощью пластин из поливинилтриметилсилана. Важная характеристика мембранных аппаратов-плотность упаковки мембраны, т.е. пов-сть мембраны, приходящаяся на единицу объема аппарата. Плотность упаковки мембран из полых волокон с наружным днам. 80-100 мкм и толщиной стенки 15-30 мкм составляет 20000 м /м , плоских мембран - 60-300 mVm . См. также Абсорбция, Адсорбция, Конденсация фракционная. Мембранные процессы разделения, Мембраны разделительные. Ректификация. [c.465]

    Все рассмотренные темы включают обзор соответствующих конструкций аппаратов или машин, расчетные р лы и примеры расчетов. Следует отметить, что материалы второй части тома применимы для описания процессов и оборудования не только химических технологий, но и смежных отраслей. Так, процессы юиссификации частиц (раздел 9), процессы осаждения дисперсной фазы из жидкостей и газов (раздел 10), высокотемпературные реакторы (печи) (раздел 19) широко используюгся в металлургической и горнорудной отраслях промышленности процессы вьшаривания (раздел 11), сушки (раздел 12), адсорбции (раздел 15), экстракции в системе твердое тело— жидкость (раздел 16) — в пищевой, а процессы кристаллизации (раздел 14) и мембранные процессы разделения (раздел 15) — в фармацевтической промышленности. Раздел 20 содержит новые данные о надежности технологических процессов и установок, методах расчета ее показателей, стратегии и тактике технического обслуживания химико-техноло-гичсских объектов (систем). Отметим, что поддержание устойчивого режима течения процесса и работы технологических установок, обеспечивающих максимальную производительность и высокое качество получаемого [c.4]

    ИСПАРЕНИЕ ЧЕРЕЗ МЕМБРАНУ, метод разделения р-ров, компоненты к-рых имеют различные коэф. диффузии. Осуществляется в мембранных аппаратах. К полупроницаемой мембране подводится исходный р-р, из к-рого через мембрану в токе инертного газа или путем вакууми-рования отводятся пары их состав зависит от т-ры процесса, состава р-ра, материала мембраны и др. При разделении происходит сорбция растворенного в-ва мембраной, его диффузия через мембрану и десорбция в паровую фазу процесс описывается ур-нием Фика (см. Диффузия). Мембранами обычно служат целлофановые, полипропиленовые, полиэтиленовые и др. пленки. Для увеличения скорости процесса р-р нагревают до 30—60 °С. Метод примен. для разделения азеотропных смесей, жидких углеводородов, водных р-ров карбоновых к-т и др. [c.228]

    На рис. 5.15 приведено сравнение экспериментальных и расчетных данных для разделения воздуха в модуле на основе ПВТМС-мембраны и пористой подложки из мипласта (а°=3,55) при различных вариантах организации потоков. Результаты расчетов по модели параллельного (прямо- и противоположного) движения потоков в напорном и дренажном пространствах модуля совпадают с экспериментальными данными (относительная ошибка не более 3%). Как видно из рисунка, осуществление процесса разделения газов в аппаратах плоскорамного типа с использованием высокопроизводительных асимметричных или композиционных мембран наиболее эффективно при противотоке в напорном и дренажном пространствах. [c.183]

    Высо-копроизводительные мембраны на основе полиоргано-силоксанов имеют сравнительно низкий фактор разделения, поэтому (кроме мембраны Р-11) широкого применения в мембранных аппаратах разделения воздуха не нашли. Исключение составляет композиционная мембрана в виде полых волокон Монсанто , в которой селективность разделения определяется материалом матрицы (полисульфон), в то время как сплошной слой (пол1иорганосилоксан) определяет производительность мембраны. Эта мембрана, как впрочем и другие в виде полых волокон (например, высокоселективная мембрана на основе поли-эфиримида), широкого промышленного применения в процессах разделения, целевым продуктом которых является обогащенный до 35—60% (об.) кислородом поток, пока не получила. Объясняется это, очевидно, высоким гидравлическим сопротивлением модулей с полыми волокнами. Однако в технологических процессах, протекающих при повышенных давлениях [например, при получении в качестве целевого продукта технического — до 95% (об.) — азота], использование аппаратов на основе полых волокон оказывается, учитывая высокую плотность упаковки, эффективным. [c.308]

    Анализируя приведенный выше метод расчета, можно отметить, что он применим только для систем, у которых параметр переноса растворенного вещества не зависит от концентрации и гидродинамических условий потока, но не пригоден для расчета процесса разделения многокомпонентных систем. Помимо постановки двух экспериментов, в которых должны быть определены неизвестные константы, для расчета необходимо знать коэффициент диффузии растворенного вещества, осмотические давления раствора и иметь обобщенную корреляцию по массоотдаче для аппаратов данного типа, что обычно требует постановки дополнительных экспериментов. Кроме того, выражения для расчета необходимой поверхности мембран громоздки, и для их решения необходимо неоднократно применять метод последовательных приближений, что может вызвать вычислительные трудности. [c.230]

    Предварительный анализ свойств компонентов и смеси уже позволяет вьщелить группы альтернативных способов получения чистых компонентов, однако полезно также выполнить анализ фазового и химического равновесия, что позволяет сузить область экспериментальных и расчетных исследований. Например, если смесь гомогенна, не образует азеотропов, характеризуется большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако очевидно, что особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, ректификация вакуумная или под давлением, мембранные процессы, кристаллизация и т. д.). [c.40]

    О Б PATH Ы Й ОС М ОС (гиперфильтрация), метод разделения р-ров, заключающийся в том, что р-р под давл. 3—8 МПа подается на полупроницаемую мембрану, проиускайщую р-ритель (обычно воду) н задерживающую полностью или частично молекулы или воны растворенного в-ва. Движущая сила процесса Др = р—(я — Яз), где р — давление над исходным р-ром, Я1 и Я] — соотв. осмотич. давление р-ра и фильтрата. Эффективность О. о. оценивают по селективности ф и проницаемости (уд производительности) G мембраны (см. Мембранные методы разделения). Значения G и ф зависят от св-в материала мембраны, давления, т-ры, природы р-рителя и растворенного в-ва, его концентрации, содержания примесей в р-рт, гидродинамич. условий процесса в мембранном аппарате. Для О. о. обычно используют плоскокамерные, трубчатые и рулонные аппараты с разделительными мембранами в виде полимерных пленок или полых волокон. [c.396]

    В настоящее время линейная феноменологическая Т. н. п. является законченной теорией, имеющей очень широкое практич. применение. Процессы диффузии, вязкого течения, теплопередачи должны учитьшаться при проектировании и анализе режимов работы хим. реакторов и др. аппаратов произ-ва. В хим. термодинамике гетерог. систем с помощью ур-ний линейной Т. н. п. рассчитывают перенос в-ва, заряда, тепла через межфазные границы и переходные слои, в электрохимии-перенос электрич. заряда при разл. условиях (см. Растворы электролитов). Соотношения Т.н.п. для прерывных систем применяются также при описании мем-братых процессов разделения, в т.ч. протекающих с участием биол. мембран. В создание линейной Т.н.п. большой вклад внесли Р. Клаузиус, Т. Де Донде, Онсагер, Пригожин, Дьярмати и др. [c.539]

    Основными задачами, которые предстоит решать в ближайшем будущем в области развития и внедрения мембранных методов разделения смесей, являются изучение механизма и кинетики процессоЕ селективного переноса в мембранах и создание соответствующей количественной теории, разработка технологии производства эффективных полупроницаемых мембран с заранее заданными свойствами и оптимальных конструкций мембранных аппаратов и методов их технологического расчета. И несмотря на то что мембранные методы разделения уже используются в самых различных отраслях техники, инженерам и ученым еще только предстоит определить наиболее целесообразные с технико-экономической точки зрения о -ласти их применения. Многое здесь будет зависеть от уровня раа— вития соответствующих областей науки и техники, но методология подхода к оценке целесообразности использования мембранных методов разделения и учета конкретных условий его осуществления сохранится. В этом, на наш взгляд, и состоит основное значение представляемой читателю книги, написанной ведущими зарубежными специалистами в области теории и практики процессов с использованием полупроницаемых мембран. [c.6]

    МЕЛЬХИОР, общее название группы сплавов на основе Си, содержащих 5—33% Ni, ок. 1% Fe, ок, 1% Мп. Устойчивы к атмосф ной коррозии, коррозии в морской воде, водяном паре обладают высокой пластичностью в холодном состоянии, Примен. для изготовления труб теплообменников в судостроении, посуды, ювелирных изделий. МЕМБРАННОЕ ГАЗОРАЗДЕЛЕНИЕ, разделение газовой смеси на компоненты или ее обогащение одним из компонентов в аппаратах с непористыми перегородками (мембранами), Основано ва различии между коэф. газопроницаемости компонентов газовой смеси. Движущая сила процесса — разность концентраций или парциальных давлений разделяемых компонентов по обе стороны мембраны. [c.320]

    Однако в настоящее время в области создания аппаратов и разделительных элементов на полых волокнах в Советском Союзе проводятся лишь поисковые лабораторные исследования, в то время как за рубежом (в таких странах, как США, Япония, Франция) основными процессами разделения большинства газовых смесей становятся диффузионные процессы с применением половолокнистых мембран [3]. Это явилось основной причиной проведения в Секторе механики неоднородных сред АН СССР работ по созданию разделительных элементов и аппаратов для испытания подобных элементов. [c.212]


Смотреть страницы где упоминается термин Мембранные процессы разделения аппараты: [c.293]    [c.320]    [c.604]    [c.647]    [c.346]    [c.342]    [c.604]   
Очистка сточных вод в химической промышленности (1977) -- [ c.153 , c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Аппарат мембранного разделения

Аппараты мембранные

Мембранные

Мембранные процессы разделения



© 2025 chem21.info Реклама на сайте