Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологический газ Синтез-газ состав

    Пример. Составить материальный баланс цикла синтеза аммиака, технологическая схема которого изображена на рис. 26. Синтез осуществляется под давлением 300 атм при 500 С. Состав свежего газа На — 74,85%, N3— 24,95%, инертных газов — 0,2%. Содержание инертных газов в продувочном газе не более 3,0%. Степень [c.222]

    В работе [1] выполнен синтез технологической схемы блока вторичной перегонки бензина установки АВТ-6. Широкая бензиновая фракция имела следующий состав  [c.210]


    Для эффективного решения задач, возникающих на всех уровнях иерархии химического производства, необходимо прежде всего выполнить идентификацию операторов отдельных ФХС, составляющих ХТС, т. е. оценить входящие в них параметры. Это может быть достигнуто либо решением обратных задач с постановкой соответствующих экспериментов (если объектом исследования служит действующее производство), либо априорным заданием ориентировочных значений технологических параметров, используя данные аналогичных производств (при проектировании новых химико-технологических систем). После процедуры идентификации отображение (2) можно считать готовым для изучения свойств ФХС в рабочем диапазоне изменения ее параметров нахождения оптимальных конструктивных и режимных параметров технологического процесса синтеза оптимального управления системой анализа и моделирования поведения ХТС, в состав которой в качестве элемента входит рассматриваемая ФХС и т. п. Реализация перечисленных задач так или иначе связана с решением системы уравнений, соответствующих отображению (2), что равносильно получению явной функциональной связи между переменными у и и либо в аналитической форме конечных соотношений, либо в виде результата численного решения задачи на ЭВМ. Формально это решение представляется в виде соответствующего отображения [c.8]

    Система управления ОКП реализована на базе технического и информационного обеспечения АСУ ТП АЗОТ , предназначенной для контроля и управления технологическим процессом в крупно-тоннажных агрегатах синтеза аммиака, и является одной из ее подсистем. АСУ ТП АЗОТ представляет собой централизованную систему, в состав которой входят пульты операторов-технологов, традиционные системы автоматического регулирования, обеспечивающие измерение и стабилизацию основных параметров процесса, а также двухмашинный управляющий вычислительный комплекс с устройствами ввода—вывода, связи с объектом и средствами представления информации. [c.339]

    Авторами разработана методика синтеза гибких технологических схем производства продуктов и очистки жидких стоков Разработана структура и состав подсистемы технологического проектирования ресурсосберегающих модульных гибких схем основного производства и очистки стоков Разработаны автоматизированная информационно-поисковая система формирования типовых модулей Модуль , а также банк типовых математических моделей основных и вспомогательных операций производства продуктов и регенерации жидких растворителей, включающая около 20 типовых процессов химической технологии. Составлена инструкция пользователя для работы с банком математических моделей и пополнения библиотеки Разработанные математические модели будут интегрированы в автоматизированггую систему оптимального выбора типа аппаратов в составе модулей. На данном этапе разработана структура, состав и функциональная схема СУБД, организующая связь баз данных по оборудованию с блоком выбора и моделирующим блоком, предназначенная для выполнения полного конструктивного расчета основных и вспомогательных аппаратов. Разработанные прототипы автоматизированных систем являются открытыми для пополнения новыми процессами, математическими моделями и программными продуктами и организованы по блочному принципу, позволяющему юс быструю интеграцию в состав компьютерно-интегрированной системы технологического проектирования ресурсосберегающих гибких модульных МАХП. [c.27]


    Изменяя технологическую схему синтеза на кобальтовых катализаторах, например, вводя циркуляцию газа (циркуляционная схема), а на железных катализаторах изменяя состав газа, можно оказывать значительное влияние на состав продуктов синтеза. Удается варьировать содержание в них олефинов, выход бензина по отношению к дизельной фракции и парафину, а также выход кислородных соединений. [c.75]

    В результате решения задачи синтеза ХСТ требуется определить химический способ производства продукта технологическую топологию системы О, покомпонентный состав и параметры промежуточных потоков системы Z, технологические О и конструкционные К параметры аппаратов, при которых для синтезированной системы обеспечивается оптимум критерия эффективности ф = ор1 т]). [c.125]

    Математическое обеспечение системы. Исходными данными для решения задачи синтеза схемы являются список компонентов и все необходимые характеристики (состав, количество, состояние и т. д.) требования, предъявляемые к качеству продуктов разделения (степень чистоты, фракционный состав) физико-химические и теплофизические свойства отдельных компонентов и смесей, необходимые для расчета фазового равновесия, тепловых потоков и параметров оборудования рекомендации по технологическому оформлению отдельных частей схемы. Сюда относится и задание рабочих давлений. На основе этих данных проводится ранжировка компонентов в соответствии с их температурами кипения или коэффициентами относительной летучести. [c.142]

    Содержательная постановка НФЗ синтеза ресурсосберегающих ГФС имеет следующий вид [128, 129]. Задано названия установок первичной нефтепереработки, с выхода которых поступает газовое сырье для разделения в ГФС, или состав и свойства потоков сырья ГФС названия и показатели качества целевых продуктов, выделяемых в ГФС, типовые ХТП разделения, которые могут быть включены в генерируемую технологическую схему (простая ректификация, абсорбция—десорбция, ректификация с дополнительным вводом питания) типы инженерно-аппаратурного оформления (ИАО) для выбранных ХТП разделения (колонна тарельчатая, колонна насадочная, фракционирующий абсорбер). [c.279]

    Технологическую схему конверсии выбирают исходя из назначения и состава конвертированного газа. При этом учитывается как качественный состав газа (наличие азота, оксида углерода (II) и т.п., так и соотношение компонентов (например, азота и водорода для синтеза в АВС). [c.219]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    В табл. 9.6 и 9.7 приведены составы технологических газов парокислородной (синтез-газ) и паровоздушной (АВС) конверсии, полученных в реальных технологических процессах и определенные аналитически. Однако состав газов конверсии может быть рассчитан теоретически, если известен удельный вес (доля) каждого вида конверсии в данном технологическом процессе. [c.227]

    Тепло отходящих газов используют для получения технологического пара. В процессе можно использовать синтез-газ. полученный неполным окислением угля или тяжелых нефтяных остатков в присутствии пара. Этот газ содержит в основном Н2, СО и небольшое количество СО2. После очистки от сернистых соединений состав газа регулируют таким образом, чтобы получить оптимальное соотношение Н2 (СО+СО2), и газ вводят в реактор синтеза без дополнительного компримирования. [c.125]

    Кинетика полимеризации накладывает ограничения на состав продуктов синтеза. Так, выход бензиновой (С5-С11) и дизельной (С 2 С]8) фракций не может превышать 48 и 30% мае. соответственно. Эту особенность процесса учитывают при его технологическом оформлении, предпочитая в ряде случаев получать максимальное количество высокомолекулярных продуктов (твердых парафинов), которые могут образовываться с селективностью, близкой к 100%. [c.358]


    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    Характеристика технологических процессов и оборудования. Производство синтетических душистых веществ является в основном многостадийным. Даже синтез таких простых душистых веществ, как эфиры и ацетали, осуществляется в 5—6 стадий. А в борьбе за создание бессточных производств, когда в состав технологической схемы входят локальные установки по утилизации, обезвреживанию сточных вод и выбросов в атмосферу, стадийность синтеза возрастает многократно. Так, синтез эвгенола из химического сырья состоит из 6 стадий, а с учетол создания этого синтеза без сброса сточных вод общее количество стадий составляет 15. Каждая стадия синтеза имеет основную аппаратуру для проведения того или иного процесса (окисления, этерификации, центрифугирования, вакуум-ректификации и др.) и вспомогательную для замера, взвешивания, сбора и хранения сырья, полупродуктов, готовой продукции (мерники, дозаторы, сборники). Применяются реакционная аппаратура, предназначенная для проведения химических реакций (окисления, нитрозирования, алкилирования) и аппаратура для проведения процессов очистки полупродуктов синтеза. К последним относятся центрифуги, фильтры, сепараторы. В этой аппаратуре разделяют смеси, состоящие из жидких и твердых веществ или смеси двух жидкостей. Для разделения жидких однородных смесей применяются дистилляционные аппараты, экстракторы. Для разделения смеси твердых веществ используются кристаллизаторы, фильтры. Применяются кристаллизаторы различной конструкции периодические с мешалками для перемешивания и рубашками для охлаждения и нагрева непрерывнодействующие горизонтальные вращающиеся барабаны. Каждый технологический процесс начинается с приема сырья и готовой продукции. Он состоит из цепи технологических операций — стадий. Основные операции заключаются в последовательной химической или механической пе])еработке исходного сырья в готовую продукцию. Большинство же операций имеют характер вспомогательных. Проектированию этих вспомогательных операций должно уделяться не меньше внимания, чем разработке проектов основных операций. [c.314]

    УГЛИ КАМЕННЫЕ — твердое горючее ископаемое черного или черно-серого цвета, относящееся к горным породам растительного происхождения. У. к. (вместе с антрацитами) занимают основное место среди горных ископаемых. Кроме органической (горючей) части, в состав У. к. входят влага и минеральные вещества, образующие золу. Органическая часть состоит в основном из углерода, водорода, кислорода и небольшого количества азота. Особое значение для У. к. имеет сера, входящая в состав органической и минеральной частей. У. к. широко используются как топливо и как важнейшее химическое сырье, перерабатываемое различными методами химической технологии. Кроме коксования, являющегося основным методом переработки У. к., их перерабатывают также путем газификации для получения топливных технологических газов и газов для синтеза многих органических соединений, а также путем полукоксования, для получения полукокса и первичной смолы. У. к. является источником для производства более 300 различных органических веществ, являющихся частично готовой продукцией, а в большинстве случаев сырьем для дальнейшей химической переработки. [c.257]

    Пример IV.6. Составить материальный баланс и программу расчета для ЭВМ на языке Алгол-60 цикла синтеза аммиака, технологическая схема которого изображена на рис. IV. 1. Синтез ведут под давлением 304 10 Па (300 атм). при 500 С. Состав свежего газа На — 74,85% N2 — 24,95% инертных газов — 0,2% (об.). Содержание инертных газов в продувочном газе не более 3,0% (об.). Степень достижения равновесных условий 0,60. В водяном конденсаторе газ охлаждается до 30 С, а в аммиачном испарителе до —5 С. Давление в конденсационной колонне 310 10 Па (306 атм). [c.162]

    Промышленный синтез метанола из оксидов углерода и водорода при низких температурах (200—300 °С) может быть проведен при разных давлениях. Естественно, при изменении давления меняются и физико-химические свойства реагируюш,их компонентов (плотность, вязкость, скорость диффузии, способность к адсорбции и т. п.). И хотя общие закономерности процесса образования метанола сохраняются, влияние отдельных технологических факторов на его выход (производительность катализатора), содержание и состав примесей будет различен, С повышением давления при прочих равных условиях увеличивается также равновесное содержание метанола в газе. [c.83]

    Как уже упоминалось, все германские промышленные установки синтеза по Фишеру — Тропшу в 1938—1944 гг. работали на кобальт-киэельгуровом катализаторе, активированном окисями тория и магния. Состав катализатора (в % вес.) 30 кобальта (металл), 2,5 M.gO, 1,5ТЬ02 и 66 кизельгура. Все установки работали по технологическим схемам, разработанным фирмой Рурхеми А. Г. при нормальном и среднем (10 ат) давлениях. В последующем кратко описывается технология синтеза при нормальном давлении. [c.89]

    Состав исходного сырья и содержание примесей в продуктах, а также расходы и составы товарных фракций, полученные из условия четкого деления, при-усде.чы в табл. .17. Значения технико-экономических коэффициентов были приняты в соответствии с существующими нормами. Оптимальный вариант технологической схемы приведен на рис. У-17, а оптимальные технологические и конструктивные параметры —в табл. У.18. Сравнение оптимального варианта схемы с остальными 131 вариантами схем показало, что синтез оптимальной схемы обеспечивает значительную экономию капитальных и энергетических затрат, в некоторых случаях до 90%  [c.292]

    В производстве ацетилена могут происходить периодические выбросы газовых смесей ацетилена-концентра-та, газов пиролиза или крекинга, синтез-газа. Обычно наибольшие выбросы производятся в период пуска агрегатов и при нарушениях технологического режима производственного процесса. Непосредственный отвод перечисленных газовых смесей в атмосферу не разре- иается, что обусловлено горючими и токсическими свойствами этих газов и недопустимостью проникания ацетилена в блоки разделения воздуха, которые вместе с производством ацетилена обычно входят в состав химического предприятия. В связи с этим некондиционные ацетиленсодержащие газы передаются на соответствующие факелы для полного сжигания. [c.130]

    В качестве исходной информации в задачах синтеза гибких ХТС используются ностадийные материальные индексы 5,/ н продолжительности технологических циклов аппаратов хц. Первые получаются в результате решения уравнений материального баланса периодических процессов, вторые — на основании сост- [c.219]

    Пример УП-1. Рассмотрим применение комплекса программ автоматизированного проектирования СРМС (рис. УП-7) для синтеза оптимальной технологической схемы разделения шестикомпонентной смеси олефинов и парафинов на четыре относительно чистых продукта. Состав разделяемой, многокомпонентной смеси и требования к продуктам разделения представлены в табл. УП-1. [c.294]

    Примерная структура САПР технологического проектирования приведена на рис. 2.2. Ее основу составляют банк данных (БД) — информационное обеспечение, содержащее данные о свойствах перерабатываемых и получаемых веществ, параметрах оборудования и схем, экономические и технико-экономические показатели последних, информационно-справочные данные и т. д. пакеты прикладных программ (ППП) общего и специали-зпрованного назначения (алгоритмы решения задач оптимизации, модели аппаратов и технологических схем) алгоритмы синтеза технологических схем алгоритмы конструкционного расчета и выбора оборудования, размещения оборудования алгоритмы синтеза систем управления. Организационно САПР технологического проектирования состоит из ряда взаимосвязанных подсистем, принципы разработки, структура и состав которой подробно изложены во второй части книги. [c.44]

    Для технологического использования нефти как источника моторных топлив, масел и сырья для органического синтеза важно знать не общий химический состав нефти, а те особенности нефти, которые влияют на технологию ее переработки. К ним относятся выход светлых фракций, выкипающих до 350 °С, содержание серы в нефти и ее фракциях, содержание базовых масел и твердых парафинов. Технологическая классификация нефтей приведена в табл. 12.5, физикохимические свойства светлых фракций нефтей СНГ — в табл. 12.6 тяжелых дистллятных и остаточных фракций — в табл. 12.7 [c.689]

    Задача синтеза систем разделения заключается в том, чтобы при известных свойствах исходной смеси X (количество, состав, температура, давление) определить стратегию получения целевых продуктов с заданными свойствами Y (количеством, концентрацией), т. е. топологию технологической схемы G, а также совокупность способов разделения — технологических операторов Т (ректификации, экстракции, абсорбции, кристаллизации и т. д.) при оптимальном значении критерия функционирования (минимуме приведепных затрат, максимальной степени извлечения отдельных компонентов, минимальных энергетических затрат и т. д.). Формально можно записать [c.471]

    Поскольку состав азотоводородной смеси, поступающей на синтез, определяется стехиометрическим соотношением азота и водорода, он практически одинаков для всех схем. Отличия в аппаратурно-технологическом оформлении различных схем касаются в основном стадий подготовки и очистки газа. В частности, можно использовать две принципиально разные схемы очистки азотоводородной смеси от двуокиси углерода, основанные на применении процессов хемосорбции и глубокого холода. [c.201]

    За последнее время разработана технология ряда антиокислительных и противоизносных присадок, содержащих серу и фосфор. Некоторые из них находятся лишь в стадии внедрения и освоены пока только на пилотных или полупромышленных установках, поэтому ниже приводятся принципиальные технологические схемы получения этих присадок, составленные на основе литературных материалов. К числу этих присадок можно отнести ВНИИ НП-360, МНИ ИП-22К, ИХП-21, ИНХП-21, Л3-23к, ЛЗ-309, ДФ-1, ДФ-11, ИХП-388, ЭФО и др. По технологии получения многие из этих присадок близки, а установки синтеза имеют однотипные узлы. Примером могут служить процессы взаимодействия сульфида фосфора (V) и исходных или промежуточных продуктов синтеза, а также нейтрализация, сушка и центрифугирование присадок и др. Несмотря на это создание единой технологии для всех фосфорсодержащих присадок затруднительно,"так как каждая присадка имеет свои особенности — различны состав сырья и способы его подготовки, неодинаковы условия синтеза и т. д. [c.231]

    Отсутствие влияния мольного отношения А V на состав сополимера при синтезе сополимеров на системе А1 (С2Н5)2С1 — УО(ОС2Н5)з устраняет ряд технологических трудностей, в том числе небходимость весьма точной дозировки компонентов каталитической системы. Получаемые сополимеры, значительно более однородны по составу и обладают высокими значениями ПТР и высокими физико-механическими свойствами, в первую очередь значительным относительным удлинением при разрыве (табл. 3.8). [c.127]

    В состав технологической схемы входят тр и основных отделения получение хлористого нитрозила, синтез и очистка капролактама, регенерация циклогексана, хлористого водорода и серной. кислоты (рис. 77). В отделении хлористого нитрозила установлены аппараты окисления аммиака, абсорберы для получения Н1итроз1илсерной кислоты и хлористого нитроэила. Последний образуется при -взаимодействии нитрозилсерной кислоты и хл-орис-того водорода. [c.229]

    Данный способ применяют для производства синтез-газа, используемого для получения аммиака. При использовании угля, содержащего 1 % влаги, 70 % С, 5 % Н,, 0,8 % 8, 1,2 % Ы, и 12 % О,, получают газ, состав которого приведен в табл. 3.2. Синтез-газ подвергают очистке. Технологическая схема процесса Коррег5-То12ек показана на рис. 3.9. [c.60]

    Самостоятельный интерес расчеты СН слоистых модификаций нитрида углерода получают при попытках интерпретации необычных свойств азот-углеродных пленок. Хотя до сих пор состав получаемых пленок достаточно далек от идеального ( 3N4), значителен градиент концентраций по толщине пленок, а их морфология существенно зависит от способа синтеза, ряд исследований (см. обзор [11]) позволил установить, что эти пленки обладают сравнительно высокими механическими параметрами, ценными адгезионными свойствами. Отмечается их значительная теплопроводность, термическая устойчивость, перспективные протекторные и электрофизические свойства, что позволяет предложить эти пленки в ряде технологических схем в качестве эффективных конкурентов углеродных пленок. [c.75]

    Этот процесс осуществлен и отработан в полупромышленном масштабе. Синтез проводится на установке высокого давления в реакторе с адиабатическими слоями катализатора и межслой-ной подачей холодного газа. Достоинства процесса выход высших алифатических спиртов до 70% использование дешевых и доступных железных катализаторов, приготовление которых освоено промышленностью применение типовых, освоенных промышленностью технологических операций и аппаратов преимущественное образование первичных спиртов нормального строения. Недостатки образование повышенного количества диоксида углерода в присутствии железа сложный состав продуктов синтеза трудность разделения реакционной смеси и ее переработки образование значительного количества низкомолекулярных спиртов и, главное, невысокая производительность катализаторов. [c.328]

    Содержание и состав микропримесей в метаноле-сырце разных производств зависит от качества сырья и его подготовки, от содержания диоксида углерода в газе, поступающем на синтез от материала аппаратуры, качества и срока службы катализатора и, наконец, от технологического режима синтеза [8]. Анализ работы производств метанола и исследования родственных Процессов позволяют сделать некоторые предположения и вы- [c.97]

    Исследования влияний технологических параметров на образование парафинов при синтезе метанола на катализаторе СНМ-1 проведены в проточном однорядном реакторе [102]. Найдено, что скорость образования парафинов в области температур 240—260 °С минимальная. При температурах ниже 220 °С и выше 260 °С выход парафинов возрастает. При повышении давления от 5 до 10 МПа выход парафинов также растет. С уменьшением объемной скорости газа выход парафинов повышается, причем в большей степени при объемных скоростях до 5-10 ч . Увеличение размера зерна катализатора с 5x5 до 9X9 мм способствует повышению выхода парафинов. Состав исходного газа также влияет на образование насыщенных углеводородов с повышением восстановительного потенциала газа (т. е. с повышением содержания водорода и оксида углерода)] выход парафинов растет, а с повышением окислительного потенциала (т. е. с повышением содержания диоксида углерода) — падает. С повышением содержания в исходном газе водорода на 20% (об.) при содержании СО 12% (об.) и С0г5% (об.) и температуре 260 °С выход парафинов увеличивается в 2—3 раза, а при 240 °С выход парафиновых углеводородов от содержания водорода практически не меняется (рис. 3.29, а, давление [c.103]

    Для целей синтеза схем разделения особые точки будем рассматривать как псевдокомпоненты, а их средневзвешенные — как псевдофракции. По отношению к псевдокомпонентам и псевдофракциям сохраняет свою силу изложенная выше методика для зеотропных смесей, которая позволяет рассчитать состав питания произвольной колонны технологической схемы разделения. Необходимо только предварительно пересчитать на псевдокомпоненты состав исходной смеси, поступающей на установку разделения. Для этой цели необходимо использовать [c.231]


Смотреть страницы где упоминается термин Технологический газ Синтез-газ состав: [c.231]    [c.21]    [c.197]    [c.100]    [c.25]    [c.239]    [c.353]    [c.428]    [c.298]    [c.316]    [c.56]    [c.63]   
Очистка технологических газов (1977) -- [ c.384 , c.385 ]




ПОИСК







© 2025 chem21.info Реклама на сайте