Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные типы химического взаимодействия

    При прямом взаимодействии азота и фосфора со многими металлами и неметаллами образуются нитриды и фосфиды. В зависимости от полярности связи Е—X можно наблюдать переходы от связей ионного типа к ковалентным или к металлическому типу связи (X=N, Р). При этом происходят переходы между тремя основными типами соединений меняются также химические свойства соединений. [c.533]


    По характеру взаимодействия металла со средой различают два основных типа коррозии химическую и электрохимическую. [c.7]

    Программированное пособие по общей и неорганической химии совершенно новое по содержанию, оно включает такие сложные разделы, как современное содержание периодического закона и периодической системы элементов Менделеева, окислительновосстановительные реакции и потенциалы, основные типы химического взаимодействия, правило фаз и элементы физико-химического анализа, соединения, номенклатуру неорганических соединений и свойства химических элементов на примере 5- и /-элементов. [c.4]

    Глава 4 ОСНОВНЫЕ ТИПЫ ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ [c.168]

    Каталитические реакции и катализаторы можно классифицировать по типу химического взаимодействия окислительно-восстановительные (гомолитические) реакции кислотно-основные (гетеролитические реакции) и сложные процессы на бифункциональных катализаторах. [c.89]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    Известно, что существуют два основных типа химических превращений реакции, происходящие с расчленением исходных соединений на структурные единицы, и реакции, в которых твердое соединение не расчленяется до конца на отдельные структурные единицы, а взаимодействует с реагентами своими функциональными группами. В химии высокомолекулярных соединений реакции первого типа называются макромолекулярными, а реакции второго типа — полимераналогичными. Вместе с тем во многих реакциях твердое вещество подвергается одновременно и деструкции и превращениям функциональных групп. [c.175]

    Рассмотренные типы диаграмм состояний — главнейшие типы химического взаимодействия в бинарных системах. Реально существующие диаграммы состояний чаш е всего имеют сложное строение, являющееся комбинацией рассмотренных основных типов диаграмм состояния (рис. 13.10, а, б). [c.274]


    В зависимости от характера распределения электронной плотности между взаимодействующими атомами различают три основных типа химической связи ковалентную, ионную и металлическую. [c.52]

    Под химической связью понимают взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов. Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Процесс этого взаимодействия может протекать различным образом. Поэтому в настоящее время различают три основных типа химических связей ковалентную, ионную и металлическую. [c.112]

    Одноосное ориентирование является одним из основных способов получения высокопрочных полимерных материалов, когда создается упрочнение в направлении ориентации и, как правило, разупрочнение в поперечном направлении. Это связано с тем, что для полимеров характерно наличие двух резко различных типов взаимодействий между атомами больших внутримолекулярных сил химического взаимодействия вдоль цепных макромолекул и малых сил межмолекулярного взаимодействия. Наличие двух типов взаимодействий приводит к крайней неоднородности распределения механических напряжений в полимерном материале, что существенно влияет на такие важные для практики свойства, как упругость и прочность. При ориентировании эта неоднородность уменьшается в направлении ориентации, и как следствие повышается прочность в этом же направлении. Кроме того, при ориентации происходит концентрирование более прочных элементов структуры в одном направлении, что приводит к практически одновременному и согласованному их разрыву. [c.185]

    Предлагаемая книга охватывает все эти и ряд других вопросов и в некотором роде является уникальной, так как ее автору удалось связать описание сложных физических явлений, обусловленных взаимодействием ионов и молекул с растворителем, с механизмами основных типов химических реакций. Сделано это на самом высоком профессиональном уровне, с поразительной эрудицией и пониманием важности каждого отдельно взятого явления или процесса. [c.6]

    Химические связи (связи между атомами в молекуле) образуются в результате взаимодействия электронов или ионов. Различают три основных типа химических связей ковалентные, ионные, металлические. [c.30]

    Потенциометрический анализ широко применяют для непосредственного определения активности ионов, находящихся в растворе (прямая потенциометрия — ионометрия), а также для индикации точки эквивалентности при титровании по изменению потенциала индикаторного электрода в ходе титрования (потенциометрическое титрование). При потенциометрическом титровании могут быть использованы следующие типы химических реакций, в ходе которых изменяется концентрация потенциалопределяющих ионов реакции кислотно-основного взаимодействия, реакции окисления — восстановления, реакции осаждения и комплексообразования. [c.116]

    Оксредметрия позволяет получать количественную информацию о химических взаимодействиях, связанных с переносом электронов. Эти взаимодействия, называемые окислительно-вос-становительными, относятся к одному из основных типов химических реакций и включают многие процессы с участием неорганических и органических веществ, а также некоторые главные процессы жизнедеятельности. По этой причине оксредметрии принадлежит важное место не только в химии, но и в биологии, медицине, геохимии, почвоведении, в различных отраслях промышленности. Экспериментальная основа оксредметрии в большинстве случаев — потенциометрическое измерение окислительного потенциала раствора с помощью гальванического элемента, в котором один из электродов изготовлен из индифферентного по отношению к раствору материала, например, платины. [c.4]

    Наряду с химическими связями между атомами внутри молекул существенную роль играет взаимодействие между молекулами — молекулярные силы. Эти силы определяют, например, явление конденсации паров, многие адсорбционные явления, а также отклонения в поведении газов при увеличении давления от законов идеальных газов. В отличие от химических сил, характеризующихся избирательностью, молекулярные силы универсальны. Любые атомные системы (атомы, молекулы) на больших расстояниях притягиваются друг к другу. Это проявляется в том, что все газы сжижаются при достаточно низких температурах. Это относится и к инертным газам. Химические силы, как указывалось, обладают свойством насыщаемости. После того как атомы водорода соединились в молекулы, другие атомы отталкиваются от этой молекулы. Молекулярные же силы не имеют этого свойства. Третья молекула притягивается к двум уже соединившимся. При этом энергия взаимодействия двух молекул (для основных типов молекулярного взаимодействия) не зависит от присутствия третьей молекулы. [c.321]


    При взаимодействии атомов между ними может возникать химическая связь. Химическая связь осуществляется валентными электронами. Например, у 5- и р-элементов внешними электронами. По современным представлениям химическая связь имеет электрическую природу. Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами н ядрами атомов. Она осуществляется по-разному. Различают основные типы химической связи ковалентную, ионную, донорно-акцепторную, водородную и др. [c.33]

    Константа скорости простой реакции прежде всего будет определяться закономерностями протекания элементарного акта. Элементарным химическим актом называется единичный акт взаимодействия или превращения частиц (молекул, радикалов, ионов, атомов и др.), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. В процессе элементарного химического акта происходит изменение расположения ядер атомов и электронной плотности в частицах, в результате чего рвутся или возникают новые химические связи. Основные типы элементарных химических актов можно разбить по их молекулярности на три группы  [c.556]

    ПЬ типу химической связи между их внутренней и внешней сферами ато-соединения могут быть ионными, ионно-ковалентными и ковалентными. Если анионный комплекс достаточно устойчив, то рассматриваемые соединения по основно-кислотным свойствам подобны бинарным. Так, производные щелочных и щелочноземельных металлов являются основными, а производные неметаллических элементов — кислотными. Сказанное подтверждают их сольволиз и реакции взаимодействия производных анионных комплексов различной основно-кислотной, природы, например  [c.279]

    Ознакомившись с механизмом образования химических связей и их основными типами, попытаемся установить, всегда ли атомы, взаимодействуя друг с другом, образуют молекулы строго определенного состава, который можно выразить с помощью химической формулы. [c.95]

    Во-вторых, реакция с участием одного компонента или двух компонентов, реагирующих в соотношении 1 1, может оказаться сложной, если прямое превращение связано с преодолением высокого энергетического барьера и существует другой путь с существенно более низким барьером. Новый путь может возникнуть лишь при появлении новых частиц, а низкий барьер на этом новом пути означает, что эти частицы легко вступают в реакцию, т. е. химически активны. Поэтому многие процессы, описываемые простым стехиометрическим уравнением, являются сложными, поскольку протекают не путем прямого взаимодействия между молекулами исходных веществ, а с помощью активных промежуточных частиц. В этой главе рассматриваются основные типы механизмов таких реакций. [c.303]

    Наряду с взаимодействиями, которые существуют в металлах, выделяют два основных типа химической связи ионную (гетеро-полярную) и атомную (гомеополярную или ковалентную). И в том и в другом случае обоими партнерами, образующими связь, достигается стабильная восьмиэлектронная оболочка (правило окте- [c.196]

    Приведенлые выше данные о влиянии растворителей на силу кислот и о их дифференцирующем действии, рассмотренные в седьмой г.лаве данные о взаимодействии недисс.оции-ровапных молекул кислот и оснований с растворителями, рассмотренные в шестой главе и сведения об ассоциации ионов, рассмотренные в четвертой главе, указывают на недостаточность схемы кислотно-основного взаимодействия Бренстеда. Теория Бренстеда — Лоури—Бьеррума, которая допускает только один тип химического взаимодействия кислот с основаниями (ТОЛЬКО обмен протонов), не позволяет объяснить всех особенностей во влиянии растворителей на силу кислот [c.568]

    Выводы, иредложенные Курнаковым, были в то время рациональными и прогрессивными. Они не только облегчали классификацию химических объектов, но п обращали внимание исследователей на одну из важных сторон — различие между статическим и динамическим типами химического взаимодействия [5, стр. 23], которая могла пролить свет на причину образования непрерывных твердых растворов. Так, в бертоллидах, по мнению Курнакова, имеет место непрерывное изменение основных величин, определяющих сам акт химического взаимодействия . [c.193]

    Третий, и наиболее важный с химической точки зрения, вид взаимодействий составляют химические реакции позитрония. Следует отметить, что некоторые виды реакций орто-пара-конверсии также являются по природе химическими, например реакции свободных радикалов. В качестве примеров основных типов химических реакций позитрония можно привести следующие  [c.163]

    Из основных типов химических реакций, протекающих в жидкой фазе двойных систем (см. гл. 1), аддатационное взаимодействие (реакции присоединения тА пВ АтВ ), как уже отмечалось, наиболее распространено. Рассмотрение всей совокупности исследованных до настоящего времени систем с взаимодействием показывает, что число систем, в которых протекают реакции присоединения, по-видимому, превышает число систем с протекающими в них взаимодействиями всех остальных типов. Вот почему проблемы количественного физико-химического анализа оказываются наиболее актуальными именно в приложении к системам, в которых протекают реакции присоединения. [c.186]

    Специфика объектов химической технологии как ФХС накладывает свой отпечаток на рабочий аппарат диаграмм связи. Для описания характера совмещения и взаимодействия потоков субстанций в локальном объеме ФХС наряду с ранее определенными узловыми структурами О и 1 вводятся новые структуры слияния 01 и 02, играющие важную роль при топологическом описании сложных объектов химической технологии. Определяются кодовые диаграммы основных типов структур потоков и физико-хими-ческих явлений в гетерофазных ФХС. Класс энергетических элементов и диаграмм связи расширен за счет введения псевдоэнергетических элементов и топологических структур связп, что позволило существенно расширить сферу применения топологического метода описания ФХС. Так, введение новых инфинитезимальных операторных элементов позволяет наглядно и компактно представить весь сложный комплекс физико-химических явлений, происходящих при бесконечно малых преобразованиях точек сплошной среды. Последнее открывает широкие перспективы для топологического описания систем с распределенными параметрами. Наконец, для учета информации о начальных и граничных условиях и ее использования при топологическом описании ФХС предложен конструктивный метод представления геометрической информации в диаграммной форме и преобразования ее к аналитическому виду с помощью специальных логико-алгебраических операций (ЛАО). [c.102]

    Один из наиболее эффективных и универсальных методов очистки и разделения газовых и жидких сред — адсорбционный метод, связанный с механизмом физико-химического взаимодействия адсорбента и адсорбата. Однако успешное внедрение его в промышленность зависит, в частности, от эффективности эксплуатируемых и проектируемых адсорбционных установок, совершенствования действующих процессов, инженерных методов расчета равновесия систем адсорбент — адсорбат, кинетики в отдельном зерне адсорбента и динамики макрослоя адсорбентов, конструктивных решений и методов оптимизации циклических адсорбционных процессов. Основными особенностями циклических адсорбционных процессов являются их многостадий-ность (стадии адсорбции и десорбции целевых компонентов, стадии сушки и охлаждения, адсорбентов, т. е. стадии, взаимно влияющие одна на другую), разнообразие типов технологических схем, различие энергозатрат для проведения стадий процесса. Вследствие этого важным звеном разработки циклических адсорбционных процессов как на этапе проектирования, так и на этапе промышленной эксплуатации служит выбор оптимальных вариантов аппаратурного оформления процессов, режимов проведения различных стадий процесса для конкретных условий применения. Выполнение указанных задач полностью определяет технико-экономические оценки выбираемых вариантов. [c.4]

    Аппараты колонного типа являются основными узлами систем разделения жидких и газообразных продуктов в нефтехимической промышленности. Способ разделения смеси определяется ее характером. В зависимости от этого выбираются принципы разделения и конструкции внутренних (контактных) элементов разделительных аппаратов (колонн). По принципу разделения колонны можно классифицировать на ректификационные, экстракционные, выпарные, сорбционные и прочие разделительные колонны [24—28]. Последние могут работать, сочетая одновременно несколько способов разделения, в том числе основанных не только на физическом, но и химическом взаимодействии компонентов смеси, как, например, в процессах клатрации, экстрактивной и азеотропной ректификации и др. [c.142]

    Исследование кинетики каталитических процессов - одним из основных методов определения механизма катализа, знание которого необходимо для решения проблем научного и практичесюго плана,Кинетические данные при этом до.таны быть надежными и неискаженными макроскопическими факторами. К последним относят физические этапы переноса вещества.и тепла, затруднения в осуществлении которых приводят к концентрационным и температурным неоднородностям в реакционном объеме и внутри кусков пористого катализатора и тем самым оказывает искажающее влияние на кинетику процессов /17 К одному из видов макрофакторов В.А.Ройтер отнес такхе химические неоднородности в ишхте и по глубине зерен контакта, которые могут возникать вследствие химического взаимодействия катализатора с реакционной средой /2-А7 и неучет которых, также как и первых двух типов искажений, обесценивает результаты исследований как в теоретическом, так и в практическом отношениях. Большое внимание этому важному для катализа принцицу о воздейотвии реакционной системы на катализатор уделяет в своих работах Г.К.Боресков /Ь- . [c.90]

    Исследования различных типов химических реакций в условиях течения и взаимодействия закрученных газовых потоков показали возможность их интенсификации за счет использования различных свойств закрученных потоков. Путем рационального конструирования на базе знаний особенностей гидро- и термодинамики течения таких потоков можно решать задачи, связанные как с необходимостью создания условий для интенсивного перемешивания газовых, газопылевых или газожидкостных компонентов, так и с требованиями максимального снижения турбулиза-ции реагентов. В рассмотренных примерах в основном использованы особенности струйного течения газовых потоков и наличие поля центробежных сил. Однако возможно использование и эффекта температурного разделения газа на холодную и горячую составляющие, образование противотока. Эти особенности течения высокоскоростных закрученных потоков могут быть использованы для проведения реакций, требующих малого времени контактирования реагентов и быстрого нафева или охлаждения продуктов реакции, быстрого отвода их из зоны реакции. Многообразие тепловых, гидродинамических и структурных форм закрученных газовых потоков открывает широкие перспективы не только для совершенствования известных конструкций реакционных аппаратов, но и для создания принципиально новых технических решений применительно к различным областям народного хозяйства. [c.321]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Таковы три основных типа дальнодействующих сил, ответственных за притяжение между молекулами, сил Ван-дер-Ваальса. На коротких расстояниях заметньши становятся силы, возникающие при перекрывании электронных облаков молекул. На больших расстояниях они несущественны, так как электронная плотность в атомах спадает практически до нуля уже на отдалении около 3 1(Г ° м от ядра. Перекрывание электронных облаков может привести к двоякого рода результатам если у частиц имеются незаполненные целиком или низколежащие свободные МО, могут образоваться межмолекулярные химические соединения, донорно-акцепторные, координационные и др. короткодействующие силы другого вида, силы отталкивания, возникающие при перекрывании заполненных оболочек, связаны с проявлением принципа Паули (см. 36). Силы отталкивания — важнейшая компонента межмолекулярного взаимодействия. На коротких расстояниях они значительны и возрастают при сближении очець быстро. Энергию отталкивания аппроксимируют выражением [c.261]


Смотреть страницы где упоминается термин Основные типы химического взаимодействия: [c.52]    [c.618]    [c.70]    [c.2]    [c.346]    [c.618]    [c.486]    [c.79]   
Смотреть главы в:

Программированное пособие по общей и неорганической химии -> Основные типы химического взаимодействия




ПОИСК







© 2024 chem21.info Реклама на сайте