Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы теории электрохимической коррозии

    ЭЛЕМЕНТЫ ТЕОРИИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ [c.10]

    Согласно теории электрохимической коррозии при соприкосновении металла с электролитом на его поверхности возникает множество микрогальванических элементов. При этом анодами являются частицы металла, катодами — загрязнения, примеси и вообще участки металла, имеющие более положительный потенциал. На катодах выделяется водород, аноды растворяются. [c.363]


    Электрохимическую коррозию вызывают главным образом загрязнения, примеси, содержащиеся в металле, или неоднородность его поверхности. Согласно теории электрохимической коррозии, в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникает множество микрогальванических элементов. При этом анодами являются частицы металла, катодами — загрязнения, примеси. Аноды растворяются, на катодах происходит связывание электронов. Совершенно чистые металлы коррозии практически не подвергаются. [c.319]

    Корродирующая поверхность металла является короткозамкнутым многоэлектродным гальваническим элементом. Материальный эффект электрохимического разрушения (растворения) сосредоточен на анодных участках корродирующего металла. Анодное растворение металла возможно при одновременном протекании катодного процесса - ассимиляции освободившихся электронов на катодных участках металла. Согласно классической теории электрохимической коррозии, участки анодной и катодной реакции пространственно разделены, и для протекания процесса коррозии необходим переток электронов в металле и ионов в электролите. Однако пространственное разделение анодной и катодной реакции оказывается энергетически более выгодным, так как анодные и катодные реакции могут локализоваться на тех участках, где их протекание более облегчено. Поэтому в большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла. [c.7]

    Окислы и гидраты окислов многих металлов термодинамически более устойчивы, чем системы, построенные из металла, кислорода и воды. Поэтому большинство металлов стремится к образованию устойчивых продуктов, т. е. их соединений с кислородом и водой. Скорость таких процессов обычно невелика она заметно увеличивается, если на металле имеются условия для поглощения и отдачи электронов, т. е. совокупность анодных и катодных процессов. Эти условия выражены тем больше, чем более неоднородна поверхность металла. Обычно - теорию электрохимической-коррозии связывают с представлениями о работе короткозамкнутых местных элементов на поверхности металла (см. 36, 38, 62). Чем больше металл загрязнен примесями других металлов и чем более при прохождении тока, т. е. при поляризации, потенциал этих примесей отличен от потенциала основного металла, тем больше действует короткозамкнутых элементов и с большей э. д. с. По мере растворения основного металла количество примесей на его поверхности и скорость коррозии увеличиваются (см. рис. 171). [c.330]


    При погружении металла в электролит между поверхностью металла и электролитом возникает разность потенциалов, называемая потенциалом электрода. Электродные потенциалы играют важную роль в коррозионных процессах. Как уже было указано, коррозионные процессы аналогичны процессам, протекающим на электродах гальванического элемента, поэтому теория электрохимической коррозии требует подробного изучения электродных потенциалов. [c.19]

    В практике часто приходится измерять электрохимический потенциал гетерогенных металлических систем, например потенциал гетерогенного корродирующего сплава. Подобные системы в простейшем случае могут быть рассмотрены как бинарные электрохимические элементы. Поэтому для теории электрохимической коррозии является весьма важным вопросом решение задачи о том, какой общий потенциал будет иметь бинарная гальваническая система катод — анод в растворе электролита. [c.189]

    Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где нх прохождение облегчено (энергия активации реакции меньше). [c.186]

    Согласно теории микропар, причиной электрохимической коррозии металлов является наличие на их поверхностях микроскопических короткозамкнутых гальванических элементов, возникающих вследствие неоднородности металла и его контакта с окружающей средой. В отличие от специально изготовляемых в технике гальванических элементов они возникают на поверхности металла самопроизвольно. На поверхности любого металла, находящегося в атмосфере, всегда есть условия для построения гальванического элемента. В тонком слое влаги, всегда существующем на поверхности металла, растворяются СОг, 50г и другие газы из воздуха. Это создает условия для соприкосновения металла с электролитом. [c.132]

    Расчет скорости электрохимической коррозии в теории микроэлементов основывается на том, что материальный эффект коррозионного процесса обусловлен протеканием электрического тока между анодными и катодными участками поверхности металла. В соответствии с этим выражение для скорости коррозии может быть получено посредством сочетания закона Ома и Фарадея. Пусть АЕ означает разность потенциалов катода и анода, а Я — полное омическое сопротивление коррозионного элемента. Сила тока, который протекает между катодом и анодом коррозионной пары, равна по закону Ома [c.249]

    Предложенное описание коррозионных процессов справедливо лишь в том случае, если поверхность металла равнодоступна как для анодной, так и для катодной реакций. Для металла с идеально однородной поверхностью (например, для жидкого металла) выполнение такого условия не подлежит сомнению. Для обычных твердых (даже очень чистых) металлов из-за неизбежной неоднородности их поверхности выполнение указанного условия неочевидно. Это явилось причиной появления на первых этапах развития учения об электрохимической коррозии металлов представлений, получивших название теории микроэлементов. Теория предполагала, что катодное восстановление окислителя (например, выделение водорода) может происходить только на некоторых участках поверхности корродирующего металла, а растворение металла возможно на других участках, так что существует пространственное разделение катодной и анодной реакций, позволяющее рассматривать коррозионный процесс как функционирование большого числа короткозамкнутых гальванических элементов . [c.86]

    Трудности в развитии строгой теории атмосферной коррозии связаны не только с тем, что скорость разрушения металла является функцией климатических элементов, но главным образом с тем, что коррозионные процессы в атмосферных условиях протекают под тонкими адсорбированными или фазовыми пленками влаги. В связи же с особыми свойствами граничных слоев жидкостей представления общей электрохимической теории коррозии, развитые для объемных фаз, оказываются недостаточными для количественной интерпретации, коррозионных процессов в адсорбированных и фазовых пленках влаги. [c.153]

    Чтобы изучить теорию процессов электрохимической коррозии, нужно знать главным образом общие законы и механизм работы коррозионных гальванических элементов, в частности, электродные потенциалы и кинетику (или поляризуемость) катодных и анодных реакций. [c.50]

    Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач. [c.51]


    Эти представления об электрохимической коррозии получили название теории местных элементов. [c.29]

    В практикуме содержатся лабораторные работы по электрохимии и электрохимической коррозии металлов. Каждой работе предпослано теоретическое введение. Наиболее подробно рассмотрены вопросы электропроводности водных растворов, переноса электричества, возникновения фазовых скачков потенциалов, учение об электродных потенциалах и э. д. с. гальванических элементов и др. Соединение в одной книге достаточно широко изложенной теории и практических задач весьма полезно для студентов, и особенно вечернего и заочного обучения. [c.2]

    Поверхность технического металла состоит из большого числа микрогальванических элементов, которые вызывают усиленную коррозию основного металла. Теория локальных токов, предложенная Де ля Ривом, была первой теорией, объясняющей электрохимическую коррозию технических металлов. Эта теория не могла объяснить коррозионное поведение совершенно чистых металлов. [c.371]

    Увеличение содержания твердых солей в воде сопровождается обычно увеличением скорости коррозии. Вода является электролитом в гальваническом коррозионном элементе, постулируемом электрохимической теорией коррозии. Увеличение количества растворенных в ней твердых веществ приводит к возрастанию проводимости электролита, что, в свою очередь, вызывает возрастание скорости электродных реакций. Кроме того, растворенные ионы могут проникать через защитное покрытие, образованное на металле продуктом коррозии или ингибитором, делая его неплотным и плохо связанным с поверхностью. К такому проникновению особенно склонны ионы хлора, что связано, по-видимому, с их небольшим размером и высокой подвижностью. [c.21]

    Возникновение коррозионных гальванических элементов не должно, естественно, рассматриваться как первопричина коррозионного процесса, но только лишь как один из возможных путей (и, практически, часто основной) для перехода системы из термодинамически неустойчивого состояния в термодинамически устойчивое. Протекание коррозионного процесса электрохимическим путем, таким образом, аналогично протеканию реакции в гальваническом элементе. Поэтому разбор и теория процессов электрохимической коррозии в значительной мере основываются на изучении общих законов механизма работы коррозионных гальванических элементов и, в частности, на изучении электродных потенциалов и кинетики электродных реакций. [c.196]

    Дальнейшее развитие теории электрохимической коррозии н значительной мере связано с именем Г. В. Акимова, давшего современную трактовку этих явлений, главным образом на основе представления О местгых (локальных), элементах, [c.639]

    При электрохимической коррозии, в отличие от химической, имеег место перенос электрических зарядов. Согласно классической теории электрохимической коррозии коррозионный процесс возникает в результате работы множества короткозамкнутых гальванических элементов ( рис. 11 образующихся вследствие неоднородности металла (с фуктурной, из-за влияния примесей) или окружающей среды (различие в составе, температуре на поверхности раздела фаз и т.д.). [c.28]

    При изучении прочности стали в коррозионных средах прежде всего необходимо ознакомиться с некоторыми положениями теории электрохимической коррозии. Эта теория, развитая трудами советских ученых — Г. В. Акимовым [1, 21, H.A. Изгарышевым [371, Н. Д. То-машовым [151] и др., рассматривает электрохимическую коррозию как результат работы гальванических элементов. Работа гальванических элементов обусловливается течением двух взаимно связанных процессов — анодного и катодного. При анодном процессе наблюдается переход ионов металла в раствор, т. е. электрохимическое растворение анодных участков металла при катодных—ассимиляция электронов на катодных участках металла каким-либо содержащимся [c.6]

    Важным вкладом в развитие теории электрохимической коррозии были работы английского ученого Фарадея, установившего основные законы электролиза и выдвинувшего, для объяснении явления пассивности металлов, гипотезу о существовании тонкой невидимой пленки, и швейцарского ученого Де Ла Рива, выдвинувшего гипотезу о существовании микрогальваниче-ского элемента. [c.50]

    При электрохимической коррозии в отличив от химической имеет место перенос электрических зарядов. Согласно классической теории электрохимической корроаии коррозионный процесс возникает в результате работы множества короткозамкнутых гальванических элементов (рис.9) образуввдхся вследствие неоднородное- [c.25]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]

    Борьбой с коррозией человечество вынуждено было заниматься ещё в древности, на заре своего развития одновременно с наступлением железного века . Ещё в пятом веке до н.э. древние феки для защиты железа от коррозии покрывали его оловом, полировали, оксидировали. Основы учения о коррозии металлов возникли на стыке двух наук - материаловедения и физической химии. Первым научным подходом в области коррозии принято считать работы великого русского учёного - естествоиспытателя М.В.Ломоносова, который в своей диссертации в середине 18 столетия открыл закон сохранения массы реагирующих веществ и обнаружил явление пассивности" у стали. В 1748 году М.В.Ломоносов высказал мысль и впоследствии (1756 г.) подтвердил её на практике, что при нафевании металлы соединяются с воздухом, образуя окалину (см. п. 1.1). В 1773 году эта первая научная теория окисления металлов бьша дополнена французским химиком А.Л.Лазуазье, доказавшим, что металлы при окисленрги соединяются с наиболее химически активной частью воздуха -кислородом. Основоположником учения электрохимической коррозии принято считать швейцарского физикохимика А.-А. Де ля Рива, который в начале прошлого столетия (1830 г.) открыл теорию коррозии микрогальванических элементов, хотя ещё в 1750 году. М.В. Ломоносов высказал мысль, что металлы в кислых спиртах растворяются иначе, чем соли в воде . Большой вклад в развитие электрохимической коррозии внес английский физик, почетный член Петербургской Академии наук М. Фарадей. Руководимый идеей о единстве сил природы, он эмпирически в 1833..Л834 годах открыл законы [c.6]

    Этот же закон окисления описывается другими теориями, в которых система металл - окисел рассматривается как гальванический элемент, внутренняя и внещняя цепи которого расположены в окисной пленке (Т.Хоар, Л.Прайс, В.Йост). Основная идея указанных работ заключается в том, что существует аналогия между процессом твердофазного окисления и электрохимической коррозией металла в водном растворе электролита. Это направление получило развитие в ряде работ отечественных исследователей (Н.Д.Томащов, И.Н.Францевич, Б.К.Опара) для случая поляризации границы раздела металл — окисная пленка. Заслуживают внимания исследования Б.К.Опары с сотрудниками, показавшие влияние постоянного и, в ряде случаев, переменного электрического поля на процесс-высокотемпературного окисления [ 12, 13]. [c.12]

    Особенно большой вклад в развитие теории структурной коррозии был сделан Г. В.. -Акимовым и его школой . Разработанная нм теория многоэлектродны.х элементов, пможенная в основу структурной коррозии металлов, уже позволила решить ряд кон-кретны.х задач. Однако в настояш,ее время появилась необходимость учитывать не только локальные токи, но также и токи са-.морастворения структурных составляющп.х. которые обычно не принимались во внимание при построении поляризационных диа-]памм многоэлектродных электрохимических систем. [c.33]

    Особенно важную роль в развитии науки о коррозии сыграли работы Б. А. Кисткковского (15], выдвинувшего фильмовую теорию коррозии Н. А. Изгарышева [16—17], изучившего ряд важных вопросов по электрохимической коррозии металлов и защитным покрытиям А. Н. Фрумкина [18], теоретически обосновавшего новое направление электрохимического механизма растворения металлов Г. А. Аки >юва [19, 20], создавшего основы структурной коррозии металлов, теорию многоэлектродного элемента, сделавшего ряд важных теоретических и практических выводов в науке о коррозии, а также создавшего советскую школу коррозионистов  [c.50]

    Гетерогенно-электрохимический механизм рассматривается как частный случай гомогенно-электрохимического. В основе гетерогенно-электрохимического механизма лежит представление о том, что корродирующий металл представляет собой сложнук> систему многих электродов (участков металла с разными электродными потенциалами). Процесс электрохимической коррозии при этом протекает с пространственным разделением анодной и катодной реакции. Исходным положением по гетерогенно-электрохимическому механизму (теория локальных элементов) является представление о том, что коррозия обусловливается действием гальванических макро- и микроэлементов, возникающих на поверхности металла вследствие электрохимической гетерогенности — неэквипотенциальности ее. Поверхность корродирующего металла рассматривается как сложная в общем случае многоэлектродная система, скорость и распределение коррозионных процессов в которой определяются электрохимической характеристикой и площадью, а также сопротивлением между ними. [c.16]

    Эти исследования, которые в нашей стране особенно интенсивно проводились Я. М. Колотыркиным, Н. Д. Томашовым и В. П. Батраковым, впервые позволили в полной мере оценить роль электродного потенциала в установлении и поддержании пассивного состояния, вскрыть важные закономерности и определить критические потенциалы, соответствующие наступлению и нарушению пассивности у различных металлов и сплавов, а также у их структурных составляющих в различных условиях. На типичных примерах была установлена роль окислителей и показано отсутствие принципиального различия между анодной и химической пассивацией металлов в растворах электролитов (Я. М. Колотыркин). В большой мере благодаря исследованиям советских ученых убедительно показана электрохимическая природа питтинговой коррозии, возникающей при строго определенном критическом потенциале в результате специфической конкуренции между пассивирующими и активирующими анионами вскрыты важные закономерности влия 1ия на развитие этого процесса как внешних электрохимических факторов, так и ряда легирующих элементов в сплаве (Я. М. Колотыркин, И. Л. Розенфельд, Н. Д. Томашов, В. П. Батраков, В. М. Новаковский и др.). Развивается также теория структурной коррозии (В. И. Батраков, И. Маршаков, А. И. Голубев и др.) и теория коррозионного растрескивания под напряжением химически стойких и высокопрочных сталей (А. В. Рябченков, В. В. Романов, В. В. Герасимов, Ф. Ф. Ажогин, С. Г. Веденкин, Н. П. Жук и др.). В самое последнее время возник новый раздел коррозионной науки, посвященный поведению коррозионных систем в условиях радиоактивного облучения. Накоплением данных и первыми теоретическими выводами и обобщениями в этой области советская наука обязана работам [c.234]


Смотреть страницы где упоминается термин Элементы теории электрохимической коррозии: [c.41]    [c.225]    [c.141]    [c.53]    [c.790]   
Смотреть главы в:

Ингибиторы коррозии металлов -> Элементы теории электрохимической коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия теория

Коррозия электрохимическая

Теория электрохимическая

Электрохимическая теория коррози

Электрохимический элемент



© 2025 chem21.info Реклама на сайте