Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение поверхности методом микроскопическим

    Площадь поверхности нанесенных компонентов необходимо знать для правильной оценки или выбора катализатора и способа его приготовления. Для этой цели наиболее широко используют хемосорбционный, электронно-микроскопический и рентгеновский методы. При хемосорбционном определении поверхности выбирают такие газы, которые адсорбируются только активными компонентами и не могут адсорбироваться носителем. [c.647]


    Все же, несмотря на эти трудности, могут быть изучены физические и химические свойства поверхность индивидуальных компонентов катализатора (удельная поверхность), состав и кислотность поверхности и, в некоторых случаях, микроскопическая морфология поверхности. Методы определения обшей поверхности, объема пор и распределения пор по радиусам в настоящее время практически установились [1] и не требуют обсуждения. [c.42]

    Прежде всего рассмотрим природу связывания металлических кристаллитов с поверхностью неметаллического носителя, на которой они находятся. Наиболее ценные данные по этому вопросу получают с помощью измерения контактных углов на поверхности раздела металл—носитель [62—64], прямых определений механическим методом адгезии металлической пленки по отнощению к носителю [65, 66] или электронно-микроскопических исследований самой поверхности раздела [67]. Результаты, приведенные в разных работах, не совсем согласуются и сильно зависят от температуры и газовой среды. [c.280]

    В заключение с.ледует отметить, что метод адсорбции газов может быть применен для определения средней величины частиц только в том случае, если частицы гладкие и не имеют внутренних поверхностей. При определении поверхности тонкоизмельченного вещества метод адсорбции газов дает гораздо более точные результаты и требует гораздо меньше времени, чем микроскопический метод. С другой стороны, если представляет интерес величина частиц, лучше применять микроскопические методы. [c.405]

    Первые два метода позволяют найти вид функции распределения массы осадка по фракциям с различными радиусами зерен, однако они не дают точного представления о степени изрезанности поверхности и тем самым о величине поверхности, на которой происходит обмен ионами между двумя фазами. В результате поверхность, доступная обмену, оказывается часто в несколько раз больше вычисленной из микроскопических или седиментационных определений. Метод адсорбции органических красителей требует, во-первых, выбора соответствующего красителя, во-вторых, знания площади, занимаемой молекулой красителя, адсорбированного на поверхности осадка. Кроме того, количество красителя, адсорбированного до мономолеку-лярного насыщения поверхностью твердой фазы, зависит от присутствия тех или иных ионов в растворе, от структуры поверхности и т. д. В общем величина поверхности, определяемая с помощью красителя, пе равна величине поверхности, доступной обменивающимся ионам, но в ряде случаев безусловно близка к ней. Наиболее точное определение поверхности может быть получено методом радиоактивных индикаторов. [c.83]


    Поскольку при мембранной фильтрации суспензии большинство взвешенных в ней частиц задерживается на поверхности мембраны, для изучения и количественного определения задержанных частиц можно использовать методы микроскопического исследования. Эти методы можно применять для анализа частиц, захваченных как из газов, так и из жидкостей. [c.205]

    Точные данные о величине пористости осадка, удельной поверхности и размере частиц можно получить непосредственным измерением только в тех случаях, когда осадок состоит из достаточно крупных частиц относительно правильной формы. Если осадок состоит из микроскопических частиц неправильной формы (что особенно часто встречается в химических производствах), то для определения этих параметров приходится применять косвенные методы. Однако последние обычно дают не действительное, а некоторое фиктивное значение определяемого параметра. [c.180]

    К методам, сопровождающимся разрушением металла покрытия, относятся химические и микроскопические определения толщины слоя. Химические методы заключаются в растворении всего слоя покрытия или покрытия только на небольшом испытуемом участке поверхности. В первом случае применяется растворитель, нереагирующий с основным металлом, и по разности масс покрытой детали и после снятия покрытия рассчитывают среднюю толщину слоя. Этот метод рекомендуется только для очень мелких, не сложных по форме деталей, на которых покрытие имеет относительно равномерную толщину, а также для тонкой проволоки. Во втором случае на испытуемый участок покрытой детали наносят с помощью пипетки капли растворителя, выдерживая каждую определенное время (0,5—1 мин), или струю растворителя, вытекающего из специальной бюретки или воронки с определенной скоростью и падающего на поверхность покрытия под углом 45° (рис. XI1-24). [c.446]

    Для фазового анализа применяется ряд физических и химических методов. Наиболее обычным физическим методом фазового анализа металлов и силикатов является микроскопическое исследование. В микроскопическом исследовании металлов обычно предварительно травят полированную поверхность металла тем или другим химическим реактивом для более четкого выделения поверхности раздела отдельных фаз. В результате выявляется определенная структура металла, которую наблюдают под микроскопом. При исследовании различных горных пород применяют, кроме того, разделение измельченной породы на фракции по удельному весу, отделение магнитных минералов (а также частиц металлического железа, внесенного при бурении скважины) посредством магнита (магнитная сепарация) и т. д. В некоторых случаях для целей фазового анализа изучают изменение свойств материалов при нагревании (термографический анализ), применяют рентгеновские и другие методы исследования. [c.14]

    Микроскопический и ультрамикроскопический методы. Эти методы определения электрофоретической подвижности заключаются в определении скорости передвижения индивидуальных коллоидных частиц в электрическом поле при помощи микроскопа или ультрамикроскопа. Преимущество этого метода перед методом подвижной границы состоит в том, что при исследовании с помощью микроскопа частицы находятся в одной и той же окружающей их среде и отсутствует поверхность раздела между коллоидной системой и боковой жидкостью. Другое преимущество этого метода заключается в том, что для определения достаточно очень малое количество раствора. Недостаток этого метода тот, что нельзя исследовать электрофоретическую подвижность частиц в растворах с более или менее значительной концентрацией дисперсной фазы, так как в таких растворах наблюдение за перемещением отдельной частицы невозможно. Разбавление же системы чужеродной жидкостью всегда влияет на -потенциал. [c.210]

    В дополнение к термическому анализу часто проводят микроскопическое исследование. Суть этого метода состоит в том, что механическим шлифованием и полированием готовится зеркальная поверхность образца, которая изучается под микроскопом после обработки травителем. Травитель выбирается так, чтобы он растворял преимущественно только один компонент сплава. Выявленная таким образом структура сплава имеет определенный вид для каждого взаимодействия металлов между собой. [c.277]

    Определение типа и концентрации дефектов кристаллической решетки, выходящих на поверхность кристаллов, производится главным образом методом электронной микроскопии. Для выявления дефектов применяется химическое или ионное травление свежих сколов кристаллов, позволяющее охарактеризовать своеобразные структуры минералов, однако интерпретация полученных результатов чрезвычайно затруднена из-за неопределенной кристаллографической ориентации граней кристалла. Кроме того, возникают трудности, связанные с получением качественных реплик с поверхности пористых образцов. Несомненно, что исследование минералов при использовании просвечивающих электронных микроскопов позволило бы получить больший объем информации о дефектности структуры минералов, если бы было возможно без особых затруднений приготавливать для анализа образцы требуемой толщины. Рельеф поверхности скола не дает прямой информации о направлении и величине вектора Бюргерса наблюдаемых дислокаций, что затрудняет идентификацию отдельных видов этих дефектов, однако электронно-микроскопическая картина поверхно- [c.236]


    Для измерения глубины коррозии используют различные приборы. Наиболее точные измерения получают при применении оптических приборов. Глубина коррозионного поражения может быть определена с помощью обычного микроскопа методом фокусирования оптической схемы сначала на плоскость, совпадающую с верхним очагом поражения, а затем — на плоскость дна очага. По разности отсчетов на микроскопическом винте судят о глубине коррозии.. Для определения глубины коррозии может применяться также двойной микроскоп Линника или оптико-механические профилографы, например профилограф типа ИЗП-18. Преимуществами профилографа являются возможность измерения очага коррозии и получение в увеличенном масштабе фотографической записи микрогеометрии поверхности образца. По профилограмме можно судить не только о глубине, но и форме образующихся коррозионных поражений. [c.22]

    Поверхность активных компонентов катализатора. Для характеристики катализатора определение поверхности активного компонента, например металла в катализаторе типа металл на носителе , иногда более важно, чем определение его удельной поверхности. Для этой цели наиболее широко используют хемосорб-ционный, электронно-микроскопический и рентгеновский методы. [c.373]

    Применять не рекомендуется, если данное определение можно осуществить методом хемосорбцин водорода. Но в определенных условиях метод титрования все же предпочтителен. Так, например, Сермон [71, 74], исследуя палладиевую чернь с высокой удельной поверхностью без носителя, подвергал ее значительному спеканию перед хемосорбцией водорода и применял традиционную процедуру восстановления и десорбции водорода. При этом наблюдалось приближенное согласие между удельной поверхностью, полученной методом титрования, и ее значением, найденным из среднего размера частиц, измеренного электронно-микроскопическим и рентгенографическим (по уширению линий) методами. Эти данные, а также результаты изучения нанесенной платины [70] свидетельствуют, что метод титрования более надежен, если частицы платины и палладия относительно велики, например если дисперсность Dpt или Dpd ниже 0,5, что согласуется с результатами исследования нанесенного палладия с Dpd =0,2 [72]. [c.315]

    Следует указать далее, что среди существуюших представлений в области катализа совсем нет столь резких противоречий, как это кажется на первый взгляд тем, кто наблюдает полемику, иногда достаточно острую, между разными школами. При этом забывают, что фундамент у всех существующих направлений в теории катализа одинаковый и состоит в признании химической природы каталитических явлений, примейимости современных представлений о строении вещества и природе химической связи, об обязательности термодинамических соотношений. Установлено существование соответствия между определенными реакциями и катализаторами. Известно, что активность твердых катализаторов зависит от способа их приготовления. Все согласны и с тем, что при исследовании каталитических реакций должны применяться кинетические методы, а при исследовании катализаторов — современные физические методы рентгеноструктурный, влектронографиче-ский, электронно-микроскопический, метод электропроводности, магнитные методы, а также определение поверхности и распределения пор по их радиусам методом низкотемпературной адсорбции. Не вызывают также сомнения существующие методы каталитического синтеза, который в Московском университете представлен большой школой одного из основоположников органического катализа — Н. Д. Зелинского. [c.5]

    Андерсон и Эмметт [97], изучившие ряд саж с диаметрами частиц приблизительно от 200 А и более, считают, что ошибка электронно-микроскопического метода в определении поверхности частиц составляет вероятно 10%. Ошибка возникает не только благодаря неточности измерений, но также из-за некоторого отклонения формы частиц от шарообразной и неопределенности в выборе значения плотности. Разрешение на микрофотографиях было, по-видимому, около 30 — 50 А. Близкие характеристики дисперсности ряда саж были получены при помощи электронно-микроскопического и других методов рассеяния рентгеновских лучей под малыми углами и адсорбционного [98, 99], что свидетельствует в пользу надежности каждого метода. При исследовании степени дисперсности латексов ошибка электронно-микроскопического метода была оценена в +3% [100]. [c.160]

    Подробному и всестороннему исследованию подвергнут ненористый порошок апатаза — кристаллической двуокиси титана, примененной в многочисленных работах Гаркинса и его сотрудников, о которых будем говорить дальше подробнее. Отсутствие значительных пор в этом порошке было доказано определением его поверхности различными методами. Однако непосредственная оценка удельной поверхности из микроскопических измерений не может даже в этом случае дать вполне надежные результаты в связи с тем, что порошок не является достаточно монодис-персным и его отдельные крупинки образуют агрегаты неправильной формы, что было показано исследованием этого порошка при помоши электронного микроскопа. [c.174]

    В этой работе мы не имеем возможности останавливаться подробно на некоторых неадсорбционных методах определения удельной поверхности, поэтому ограничимся только кратким упоминанием некоторых более новых из них . Мы уже говорили о микроскопических и электронномикроскопических методах определения внешней поверхности адсорбентов. Предложены методы определения поверхности адсорбентов сравнением скоростей растворения непористых пластинок и высокодисперсного материала. Пальмер и Клэрк э определили, таким образом, поверхность порошка кварцевого стекла, сравнивая скорости его растворения в плавиковой кислоте со скоростью растворения кварцевого стекла с известной поверхностью, и нашли для порошка величину равной 4690 см /г. Они исследовали изотермы адсорбции различных паров этим образцом. Позже Брунауер, Эмметт и Теллер обработали эти результаты предложенным ими методом и нашли для удельной поверхности величину в 5640 см /г, т. е. близкую к полученной сравнением скоростей растворения. Это [c.193]

    Микроскопическое определение поверхности является чрезвычайно трудоемким процессом как собственно измерения, так и входящие сюда расчеты требуют чрезвычайно много времени. Более того, предположение о независимости формы от размеров частиц может быть и несправедливым надежная экспериментальная проверка этого допущения до сих пор отсутствует. Наконец, что наиболее важно, этот метод дает правильную поверхность только для гладких непористых веществ. Далее мы увидим, что [ яд других методов позволяет определить полную поверхность (как наружную, так и внутреннюю) для п орошков или других тонкораздробленных материалов с большей легкостью и без всякого анализа формы и размера частиц. [c.369]

    Естественно, бывают проблемы большой практической важности, для разрешения которых исследователь прежде всего будет заинтересован в определе-1П1и внешней поверхности частиц в этих случаях следует применять метод Гейвуда или какой-либо другой визуальный метод. Однако микроскопические методы часто применялись в нрешлом для определения поверхности даже тогда, когда исследователь был в действительности заинтересован в определении общей иоверхности вещества, а не только его внешней поверхности. Например, при сгорании угля или при схватывании цемента ход процесса зависит от доступности для малых молекул (кислород и вода) поверхности вещества. Эти молекулы, конечно, могут 24 с. Вруиауе/- [c.369]

    Метод проницаемости может быть применен с успехом для определения поверхности порошков, состоящих из столь крупных частиц, что для них невозможно точное определение поверхности по методу адсорбции азота. Для среднего размера частиц, превосходящего 10 л, метод проницаемости является более точным, чем метод газовой адсорбции. Он много лучше трудоемкого микроскопического метода. Вместе с тем метод абсолютно неприменим к очень тонким, порошкам. Карман[ ] установил, что теоретический нижний предел применимости метода находится около 0,1 л. Частицы окиси цинка, рассматриваемые в табл. 47, таким образом, чрезвычайно близки к нижнему пределу. Метод пе может быть применен к столь тонким частицам, как некоторые образцы сажи, поверхпость которых была определена Смитом, Торнхиллом и Брэем [ ] по методу адсорбции азота. [c.414]

    Если, однако, эти предположения отвечают действительности, то очень трудно объяснить хорошее совпадение результатов опытов по определению поверхности кристаллических осадков PbS04, ВаСг04, РЬСг04 и т. д. с помощью первичной обменной адсорбции, микроскопических измерений и эмана-ционного метода (табл. 3-2). [c.108]

    Применении воды, былп на 20—40% выше, чел1 в слл"-чае воздуха. Определение поверхности седиментацион-ным методом Андризена [5о] хорошо совпало о данными проницаемости по воздуху, Гуден и Смит[ ] применили самозаписывающую аппаратуру для определения проницаемости воздуха и измерения средних диаметров частиц порошков кварца. При сравнении с микроскопическим методом обнаружилось хорошее совпа-ден11е вплоть до частиц с диаметром в Зд, однако для более мелкой фракции (0,3—Зд) метод проницаемости по воздуху дал величины, на 58% превосходящие микроскопические. [c.414]

    Для определения удельной поверхности были подготовлены эталоны минерального волокна с определенной геометрической поверхностью, подсчитанной микроскопическим методом. На этих эталонах затем адсорбировался выбранный радиоактивный препарат (водный раствор Ма2Ш04, где Ш является радиоактивным). Таким способом был определен коэффициент соответствия между известной удельной поверхностью, найденный микроскопическим путем, и количеством адсорбировавшегося На2 04 (выраженного в имп/мин). [c.589]

    Правильность представлений о простейшем виде обменной первичной адсорбции, когда происходит ионный обмен изотопов, может быть подтверждена истинностью величины поверхности, вычисленной исходя из приведенного выше уравнения. Обычно представления об истинной поверхности связаны с микроскопическими определениями, но они позволяют определить лишь геометрическую поверхность. Согласно Панету и Форверку [ ], порядок величины поверхности некоторых суспензий плохо растворимых свинцовых солей, определенный путем адсорбции на них ThB и микроскопическим методом, оказа.ися неизменным, но величина поверхности, определенная адсорбционным методом, оказалась несколько больше определенной микроскопически (табл. 164). Такая разница в значениях, полученных разными [c.436]

    Образовавшийся в результате кристаллизации и распада крупных агрегатов высокодисперсный слабоокри-сталлизованный гетит срастается в сравнительно крупные иглообразные кристаллы так же, как это имеет место и при кристаллизации гидроокиси алюминия. Однако детальное рассмотрение электронно-микроскопических снимков недолго старевших образцов позволяет различить, что иглы состоят из первичных частиц кроме того, расчет величины поверхности по геометрическим размерам иголок дает заниженные значения. Например, для образца, осажденного при pH 12 и 80°С и старевшего в течение 3 ч, расчетная величина поверхности составляет 43,7 M Jr, а определенная адсорбционным методом — 75—80 см. рис. 1.25). Это показывает, [c.57]

    Применение микроскопического исследования для определения поверхности вторичного выделения возможно при условии, что сплавы не являются слищком летучими или химически активными их структуры, существующие при высокой температуре, не должны маскироваться изменениями, происходящими при закалке или во время быстрого охлаждения. Если эти условия удовлетворяются, то исследование заключается в закалке или быстром охлаждении сплава после отжига. Отжиг должен обеспечивать равновесие, и его нужно проводить прн последовательно повышающихся температурах. Отметим, что продолжительность отжига в такого рода работе может быть гораздо длительнее, чем продолжительность отжига, необходимая при определении точек солидус в бинарной системе. Как объяснялось в главе 19, если гомогенный сплав нагревается немного выше точки плавления обычно в течение получаса, то при этом образуется жидкость в Количестве, которое может быть обнаружено микроанализом. С другой стрроны, если нагревается тройной сплав, состоящий из жидкости, а также твердых фаз Л и В, то это часто приводит к образованию грубой структуры, которая может потребовать длительного отжига для того, чтобы стать двухфазной типа (жидкость + Л). Когда относительное количество жидкости у поверхности вторичного выделения достаточно велико, при кристаллизации возможна сегрегация кристаллов, и в таком случае микроскопический метод оказывается бесполезным. [c.373]

    Электронно-микроскопический анализ. Этот метод дает представление о строении кристаллических областей в асфальтенах и дает наглядную картину об их надмолекулярной организации. Исследования выполняются в просвечивающих и сканирующих (растровых)- электронных микроскопах [329, 330]. Просвечивающие электронные микроскопы позволяют одновременно получать как электронно-микроскопический снимок, так и электронограмму в области больших и малых углов. Разрешающая способность их составляет 15—2 нм, а для сканирующих микроскопов 3—5 нм. Пучок электронов вызывает значительный разогрев и даже плавление образцов, поэтому просвечивающая электронная микроскопия применяется для объектов, имеющих незначительную толщину,— несколько десятков нанометров. Для этого образцы специальным образом готовят получают либо тонкие пленки, либо с помощью ультрамикротомов готовят срезы толщиной 10—20 нм. Из косвенных методов для исследования структуры асфальтенов получил распространение метод реплик. Для исследования используют мелкодисперсные порошки асфальтенов [325] или растворы в бензоле [319]. В первом случае асфальтены помещают на угольную (аморфную) подложку на медной сетке. С целью определения фоновых микропримесей проводят контрольные съемки пустой подложки. Во втором случае бензольные 0,1 % растворы асфальтенов диспергируют на поверхность полированного стекла с частотой излучателя 35 кГц. Далее стекло.с пленкой асфальтенов помещают в вакуумный пост и растворитель откачивают в течение 20 мин. Для контроля сходимости результатов с поверхности пленки асфальтенов получают реплику двумя способами. Одноступенчатая реплика образовывается напылением угольной пленки, а двухступенчатая — чистого алюминия толщиной не менее 0,2 мм. Затем асфальтеновую пленку растворяют в бензоле и отдельную угольную реплику оттеняют платиной. Во втором случае на обратную сторону отдельной алюминиевой фольги напыляют платиноугольную реплику толщиной 20—30 нм, а алюминиевую фольгу затем растворяют в азотной кислоте [331]. [c.158]

    Нажимов Ю. И., Рутман А. М., Фиалков А. С. Определение величины граничной поверхности дисперсных материалов методом количественного анализа электронно-микроскопических изображений. — Заводская лаборатория, 1989, >6 8, с. 57-60. [c.677]

    В заключение остановимся на методе исследования больших плоских пенных пленок, образующихся при извлечении рамки из раствора детергента. Используя оптический контроль толщины пленок и другие остроумные приспособления, Майзельс, Овербек, Дуйвис и Ликлема обновили этот старый метод и сделали его перспективным. Как и все методы, основанные на использовании больших пленок, он ограничен применимостью только к очень устойчивым пленкам, в чем и состоит его главный недостаток. В то же время в мётоде используется модель, болеё адекватная реальным пенам, в которых пленки далеко не всегда бывают микроскопическими. С его помощью, как уже говорилось, можно установить наличие или отсутствие реологических процессов в пленке. Кроме того, метод позволяет наблюдать за взаимным перемещением тонких и толстых участков в пленке, а также за протекающими вблизи ее краевых утолщений весьма сложными процессами, играющими важную роль в общем поведении пленок. Используя большие пленки, Майзельс в своих очень элегантных опытах продемонстрировал явление отверждения пленки, которое возникает при определенном составе и поверхностной концентрации стабилизатора. Вводя в раствор вторую рамку, которая подымается и опускается, можно быстро изменять общую поверхность пленки и тем самым [c.239]

    Стереомикроскопичес кий метод позволяет определить структуру поверхности исследуемого материала, высоту и ориентацию отдельных аморфных и кристаллических фаз, характер расположения кристаллов и т. п. Электронно-микроскопическая фотография стереоскопической структуры объекта получается фотографированием его под различными углами и последующего совмещения двух снимков в стереоскопе. Для фотографирования определенных участков объекта под различными углами применяют специальные стереопатроны, которые позволяют наклонять препарат п о отношению к оси микроскопа. При рассмотрении двух стерео-микрофотографий в стереокомпараторе можно получить не только качественную пространственную структуру объекта, но и определить размеры отдельных элементов сложного рельефа. [c.133]

    Для определения пористости оксидного покрытия на кремнии обычно пользуются методом хлорного травления, в основу которого положено взаимодействие кремния с сухим хлором при высоких температурах. Оксидная пленка в этих условиях стабильна. Поэтому воздействие хлора на кремний возможно только в местах присутствия сквозных пор в оксиде. Микроскопическое исследование после хлорного травления позволяет установить не только общее количество пор, их концентрацию, но и распределение дефектов по поверхности, а также проследить взаимосвязь процесса порообразования со структурой подложки. Чувствительность метода хлорного травления зависит от температуры, времени травления и размеров пор. Последние должны обеспечивать возможность диффузии газообразного галогена к незащиш,енной поверхности кремния. Данным методом нельзя установить наличие несквозных или субмикроскопических пор. Режим травления (температура и время) может быть выбран ио данным табл. 4. [c.122]

    Микропористость в коллоидных частицах в некоторых случаях может быть продемонстрирована методом малоугловой дифракции рентгеновских лучей. Когда определяемый таким методом размер частиц оказывается значительно меньшим, чем размер, подсчитанный из величины удельной поверхности, которая измерялась по адсорбции азота или наблюдалась по электронно-микроскопическим снимкам, то это означает, что подобные частицы составлены из еще меньших дискретных единичных образований, их упаковка так плотна и получающиеся при этом поры настолько малы, что молекулы азота в них не проникают [72]. Большая часть гелей состоит из первичных частиц, пронизанных порами, доступными молекулам азота. Однако Ледерер, Шурц и Янцон [73] сообщили, что, по-видимому, в полученных ими определенных разновидностях гелей кремнезема наблюдалась некоторая внутренняя поверхность, поскольку соответствующие высокие значения гидратации для таких гелей, равные 0,15—0,26 г НгО/г 5102, должны означать наличие высокой пористости. [c.446]


Смотреть страницы где упоминается термин Определение поверхности методом микроскопическим: [c.48]    [c.45]    [c.380]    [c.414]    [c.369]    [c.369]    [c.436]    [c.440]    [c.329]    [c.331]    [c.86]    [c.148]    [c.273]    [c.636]   
Адсорбция газов и паров Том 1 (1948) -- [ c.72 , c.368 ]

Адсорбция газов и паров (1948) -- [ c.72 , c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Метод определения поверхности

Определение поверхности



© 2024 chem21.info Реклама на сайте