Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация на границах раздела

    При поляризации границы раздела Hg — раствор путем приложения внешней э. д. с. к клеммам 3 н 4 в ячейке, состоящей из рассмотренного ртутного и каломельного 5 электрода сравнения, наблюдается перемещение уровня ртути. Это означает, что приложение внешней э. д. с. изменяет а на границе Hg — раствор (поскольку электрод сравнения не поляризуется). Для удержания границы на прежнем равновесном уровне (у метки) необходимо поднять или опустить шар 6. [c.193]


    Рассмотрим природу поляризации электрода при условии медленного подвода реагирующего вещества к поверхности. При этом поляризация связана с изменением концентрации вещества у поверхности по сравнению с концентрацией в объеме раствора и называется концентрационной поляризацией. Из-за наличия разности концентраций система оказывается неравновесной, само же электродное равновесие, связанное с переходом электронов через границу раздела, не нарушается. Поэтому для определения поляризации можно воспользоваться уравнением Нернста. Согласно этому уравнению для электродов первого рода потенциал р определяется соотношением  [c.149]

    Влияние поляризации упругих волн на их отражение и преломление. При падении плоской продольной волны на границу раздела двух сред возникают смещения и напряжения, ориентированные только в плоскости падения (плоскость рис. 1.11). Следовательно, векторы смещения частиц в отраженной и преломленной волнах лежат в той же плоскости, что и в падающей волне. Поперечные волны будут линейно поляризованы в плоскости падения. [c.41]

    При измерения спектров данным методом пучок ИК-излучения направляется под уг юм на поверхность пластины полупроводника, прозрачней в ИК-области, проходит внутрь пластины и отра.жается от металла, проходя при этом через исследуемый слои и поглощаясь в нем на частотах, соответствующих веществу слоя. Фактор поглощения излучения AR в слое определяется оптическими постоянными мета. 1ла (пз, з), слоя ( 2, з), показателем преломления полупроводника Пи углом падения излучения на границу раздела полупроводник — металл и направлением его поляризации. Максимальное значение факторов поглощения так же, как и для поглощения света в слое на поверхности металла, достигается при наклонных углах падения и в /з-поляризованном излучении. [c.153]

    Для нахождения величины заряда поверхности определяют количество электричества, которое необходимо сообщить границе раздела металл — раствор в момент ее образования. При этом предполагается, что все количество электричества тратится на заряжение поверхности, т. е. электрод обладает свойствами идеальной поляризуемости. Кривыми заряжения можно охарактеризовать зависимость потенциала электрода от сообщенного ему количества электричества. Кроме того, по этим кривым можно определить емкость электрода, а следовательно, и истинную поверхность его, что крайне необходимо при исследовании характера электродной поляризации и свойств пассивных пленок. [c.267]


    Временное образование заряда в твердой фазе может быть достигнуто в процессе ее поляризации — сообщения или извлечения электронов при контакте с внешним источником зарядов. Эти лроцессы, происходящие на границе металл — раствор, подробно изучаются в электрохимии. В данном случае внутренняя обкладка может образоваться и без перехода ионов через границу раздела (идеально поляризующийся электрод), а внешняя — в результате перераспределения ионов в растворе под воздействием поля твердой фазы. [c.182]

    Процесс коррозии сплава или загрязненного металла определяется работой микрогальванических пар, в большом количестве возникающих на границе раздела металл — электролит. В результате процессов поляризации анодные участки могут пассивироваться настолько, что они становятся катодами по отношению к прежним катодным участкам. После изменения направления тока восстанавливается прежняя система распределения анодных и катодных участков. Такая периодическая меняющаяся система впервые рассмотрена в теории многоэлектродного потенциала И. Д. Томашевым. Явления поляризации коррозионных гальванических пар, как правило, снижают скорость коррозионных процессов. [c.520]

    Определение емкости электрода переменным током заключается в том, что поверхности металлического образца и раствору сообщают малые количества электричества и измеряют изменение потенциала электрода. Чтобы найти величину заряда поверхности, определяют количество электричества, которое необходимо сообщить границе раздела фаз металл — раствор в момент ее образования. При этом предполагается, что все количество электричества тратится на заряжание поверхности, т. е. электрод обладает свойствами идеальной поляризуемости. Кривыми заряжания можно охарактеризовать зависимость потенциала электрода от сообщенного ему количества электричества. Кроме того, по этим кривым можно определить емкость двойного слоя электро-да, а следовательно, и истинную поверхность его, что крайне необходимо при исследовании характера элекТ родной поляризации и свойств пассивных пленок. [c.324]

    Диффузионная поляризация, возникающая на границе раздела электролитов в анодном и в катодном пространстве (ано-лита и католита) из-за различия в числах переноса аниона и катиона, обычно невелика и составляет при температуре 80°С и С С2 = , примерно 1 мВ. [c.24]

    Поляризация. Электрохимическая реакция является гетерогенным процессом и ее скорость лимитируется одной из стадий подвод реагирующего вещества к границе раздела фаз — разряд-ионизация — отвод продуктов реакции. Поляризация, определяемая медленной стадией массопереноса, называется концентрационной. Если медленной стадией является разряд-иони-зация, то поляризация называется перенапряжением. Природа и значение поляризации зависят от многих факторов — природы реагирующего вещества, материала электрода и состояния его поверхности, плотности тока, состава раствора, температуры и т. д. [c.28]

    А. И. Красильщиков с сотрудниками считает защитная способность покрытия связана с тем, что в результате его взаимодействия с металлом изменяется энергетический уровень атомов, расположенных на поверхности, и таким образом повышается его термодинамическая стабильность. Образующийся на границе раздела металл — покрытие двойной электрический слой вызывает торможение электрохимических процессов на металле под пленкой, снижает ток пассивации и увеличивает адгезию полимера к металлу. На основании установленной зависимости между адгезией покрытия к стали и током поляризации, характеризующим защитную способность покрытия, авторами предложен неразрушающий метод определения прочности связи покрытия сЬ сталью по величине плотности тока анодной пассивации [19, 30]. [c.27]

    Здесь й=/ х—параметр поляризации. При 6 1 (х=0) как нижней границе потенциала и защитном потенциале и2(х=а) —11 из формулы (24.115) может быть получена протяженность зоны защиты (проникновения тока) а. Хотя при катодной защите стали в воде различного состава согласно разделу 2.4 и не существует предельного потенциала и , все же следует принимать предельное значение Ои поскольку при катодном выделении водорода сопротивление поляризации г заметно уменьшается. Диапазон защитных потенциалов ( 1—таким образом, определяется неизменяющимся сопротивлением поляризации (см. раздел 11.3.2). Из формулы (24.115) в таком случае следует [c.470]

    Оборудование, работающее в коррозионной среде, должно быть изготовлено так, чтобы исключить возможность локального увеличения коррозии. В противном случае могут проявиться коррозионные элементы. Ускорение коррозии в анодной зоне и замедление ее в катодной зависят от интенсивности тока, возникающего в результате работы таких макроэлементов. Скорость коррозии определяется поляризацией обоих электродов, омическим сопротивлением элементов, контактом металлов и среды и размерами границы раздела фаз. [c.42]


    Первый случай можно рассматривать как частный для подземного сооружения с поляризацией от внешнего источника, при котором устанавливается материальный баланс. В этом случае наблюдается равновесие между металлом подземного сооружения и грунтом, а через границу раздела фаз протекает ток обмена о. Никакого окисления или восстановления в конечном счете на границе металл—грунт не происходит. При сдвиге потенциала в положительную сторону от равновесного, что представляет собой второй случай, металл окисляется. Через границу раздела с поверхности металла в раствор протекает результирующий ток, определяемый выражением (12). [c.9]

    Участки металла, покрытые полимерной пленкой, также активны по отношению к катодному процессу, однако электронная проводимость пленок исключается допускается, что пленки хорошо пропускают кислород и воду, и катодный процесс развивается на границе раздела металл — лакокрасочное покрытие. Иными словами, катодный процесс протекает под пленкой, а анодный — в порах. И в этом случае активно действующий катод с большой поверхностью будет способствовать созданию в порах больших плотностей тока, которые вызовут заметную анодную поляризацию и смещение стационарного потенциала в сторону положительных значений. [c.105]

    Этот же закон окисления описывается другими теориями, в которых система металл - окисел рассматривается как гальванический элемент, внутренняя и внещняя цепи которого расположены в окисной пленке (Т.Хоар, Л.Прайс, В.Йост). Основная идея указанных работ заключается в том, что существует аналогия между процессом твердофазного окисления и электрохимической коррозией металла в водном растворе электролита. Это направление получило развитие в ряде работ отечественных исследователей (Н.Д.Томащов, И.Н.Францевич, Б.К.Опара) для случая поляризации границы раздела металл — окисная пленка. Заслуживают внимания исследования Б.К.Опары с сотрудниками, показавшие влияние постоянного и, в ряде случаев, переменного электрического поля на процесс-высокотемпературного окисления [ 12, 13]. [c.12]

    При поляризации границы раздела Hg — раствор путём прИЛбясёния Внёда ней э. д. с. к клеммам 3 и 4 в ячейке, состоящей из рассмотренного ртутного [c.179]

    Под влиянием внешних воздействий, например поляризации границ раздела или адсорбции на них ионов электролитов или молекул органических веществ, смачиваемость исслеад емой поверхности может быть сильно изменена. Изменится и величина краевого утла, а также флотируемость часшц, на поверхности которых произошли аналогичные изменения. [c.30]

    Опубликовано несколько сообщений об иммунохимических электродах с толстыми полимерными мембранами. Так. Аизава и другие [37] описали иммуноэлектрод, чувствительный к антителам против возбудителей сифилиса мембрана этого электрода состояла из ПВХ, холестерина, кардиолипина и фосфатидилхолина. Можно было предполагать, что не содержащая ионофоров и поэтому неспособная индуцировать ионный поток через границу раздела полимерная мембрана обеспечит идеальную поляризацию границы раздела, в то время как электропроводность системы в целом будет достаточно высокой для измерений. [c.416]

    Следует, однако, отметить, что интерпретация диэлектрических изотерм носит в настоящее время качественный характер, и прямых доказательств существования или преобладания определенных видов поляризации диэлектрический метод не дает. В связи с этим встает вопрос об учете поляризации, обусловленной отщеплением (диссоциацией) ионов от функциональных групп или с поверхности кристаллической решетки по мере поглощения полярных групп молекул и их перемещением в ассо-циатах или пленках сорбированной жидкости под действием электрического поля. Скопление ионов на границе раздела различных фаз или компонентов смеси при включении электрического поля приводит к поляризации Максвелла — Вагнера [666, 667], которая уменьшается с ростом частоты электрического поля. Поэтому при измерениях диэлектрических характеристик на высоких частотах роль этого эффекта незначительна. Дру- [c.248]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    Отражение условий межфазвого равновесия с помощью диаграмм связи, в силу специфики физико-химических явлений, происходящих на границе раздела фаз, последняя может быть выделена в отдельную фазу — Е-фазу. Важнейшими физико-химическими особенностями, характерными для Е-фазы, являются закономерности, определяющие условия равновесия на границе раздела фаз, особенности энергетического состояния, проявляющиеся в межфазном поверхностном натяжении, анизотропных напряжениях, электрической и магнитной поляризации поверхностного вещества, значительные перепады концентрации в пленках со стороны каждой из фаз наличие межфазных переходных потоков массы, энергии, импульса и т. д. [c.143]

    В теории поляризации специфические свойства поверхности не рассматриваются, в то время как в большинстве случаев на границе раздела фаз образуется поверхностный слой со свойствами, отличающимися от объемных. Например, диспергированные в неполярной среде капельки или частицы обладают электрическим зарядом, который возникает благодаря различным физико-химическим процессам. Анализ явлений в области сильной поляризации затруднен тем, что в диэлектрических системах одновременно может происходить несколько процессов, имеющих различную природу (электрофорез, дизлектрофорез и др.). В связи с этим оценку роли каждого фактора проводят, как правило, на модельных системах. [c.21]

    Дело в том, что различные значения диэлектрическо проницаемости в моменты времени г = О и = оо связаны с изменением ее в зависимости от частоты н 5иложенного переменного тока.- Эта частотная зависимость диэлектрической проницаемости определяется поляризацией поверхностп раздела, потому что заряды, накапливающиеся на поверхности раздела нли границе между двумя фазами, приводят к возрастанию наблюдаемой поляризации диэлектрика. [c.388]

    При объяснении диэлектрических свойств некоторых коллоидных систем удачной оказалась только теория поляризации поверхности раздела. Возможно, другие теории дают разумные объяснения результатов, но большинство из них остаются на стадии феноменологических объяснений или гипотез. Как отмечено (см. стр. 404), соотношение между диэлектрическими свойствами жидкостей или растворов, состоящих из полярных молекул, и суспензий сферических частиц все еще ни теоретичЪски, ни экспериментально не освещено. Дальнейшие исследования необходимы для определения критериев границ применения электрических методов в коллоидных системах. [c.412]

    Остановимся на явлениях, сопровождающих поляризацию ртутного капающего электрода. На поверхности ртутной капли, погруженной в раствор, как и на всякой границе раздела фаз, формируется двойной электрический слой (ДЭС), возникающий вследствие энергетической неравноценности состояния частиц на поверхности и в объеме каждой фазы, а также из-за сопритя-жения частиц в растворе и поверхности. ДЭС можно уподобить конденсатору, емкость которого зависит от разности потенциа-алов на его обкладках. На заряжение ДЭС расходуется некоторое количество электричества. С увеличением потенциала электрода емкость ДЭС возрастает вследствие его уплотнения. [c.272]

    Рассмотрим подробнее механизм возникновения и протекания диффузионного процесса. До начала электролиза концентрации электродиоактивных веществ в объеме раствора и на границе раздела электрод — раствор одинаковы. В ходе поляризации потенциал электрода достигает значения, при котором электродноактивное вещество вступает в реакцию, что сопровождается исчезновением из приэлектродной области части реагирующих частиц (ионов, если электролизу подвергается соль, или нейтральных молекул, особенно в случае органических соединений). [c.274]

    Помимо контроля скорости реакции диффузионным процессом, характерного для обратимых реакций, существует контроль переносом заряженных частиц (электронов или ионов) через границу раздела электрод—раствор. В этом случае электродную реакцию называют необратимой. К необратимым процессам урапнепие Нернста неприменимо, поскольку на значительной части поляризационной кривой поляризация электрода при протекании тока не связана с изменением концентрации электродно-активного вещества в приэлектродной области, последнее просто отсутствует. Рассмотрение теории замедленного разряда приводит к следующему выражению, связывающему потенциал электрода и силу поляризующего тока [c.277]

    Наличие двойного электрического слоя на границе раздела фаз в дисперсных системах обусловливает также существование ряда так называемых электрокапил-лярных явлений. Эти явления сводятся к тому, что при электрической поляризации происходит изменение поверхностного натяжения на границе раздела фаз (опыт 85). [c.174]

    На электродах гальванических элементов, например элемента Якоби — Даниэля, протекают реакции, подчиняющиеся тем же закономерностям, что и на электродах, подсоединенных к внешнему источнику тока. Так, если пропускать через границу раздела электрод — раствор постоянный ток, то будет происходить изменение строения двойного электрического слоя и изменение электродного потенциала по сравнению с равновесным значением. Такое отклонение потенциала от равновесного при протекании виещ-пего тока получило название электрохимической поляризации электродов. Кривые зависимости тока от потенциала называют поляризационными кривыми. [c.151]

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризаци- [c.196]

    В трехфазной системе металл — газ — электролит изменение потенциала электрода приводит к соответствующим изменениям поверхностного натяжения на границе раздела металл — электролит, а также угла смачивания пузырьком газа поверхности металла. На этом принципе основано определение фн по изменению краевого угла в зависимости от потенциала и поляризации. Однако по точности этот метод уступает предыдущему. [c.213]

    При облучении татана ионами палладия с энергией 90 кэВ и дозой 10 ион/см происходит гаусовское распределение плотности по глубине приповерхностного слоя матрицы с максимальной концентрацией, достигающей 4 % на расстоянии 24 нм от поверхности. Характерное распределение катодной структурной составляющей в значительной степени определяет кинетику процесса коррозии титана в 10 %-ном растворе серной кислоты. По мере растворения титана и перемещения границы раздела металл—раствор, с одной стороны, в контакт с раствором вступают все более обогащенные Рс1-слои, а с другой - возможно накопление катодных отложений непосредственно на поверхности титана, что приводит к увеличению концентрации палладия (до 20 %), усиливает анодную поляризацию анодной фазы и облегчает ее пассивирование (потенциал коррозии повьпиается на 0,8 В). Стационарная скорость растворения титана достигается менее чем за 1 ч с момента погружения в раствор и имеет величину в 1000 раз ниже скорости растворения чистого пиана. [c.77]

    Следует отметить, что поляризационный скачок электродного потенциала на границе раздела фаз металл—электролит определяется величиной плотности тока поляризации, поэтому достаточно исследовать распределение / (х) во всех точках х вдоль трубопровода, чтобы иметь представление о распределении вариаций электродного потенциала на поверхности металла, характеризующих макроэлектрохиМическую гетерогенность. [c.210]

    Классическая теория постоянного или выпрямленного электрического тока в электролитах основана на предположении квазистационарных процессов. С одной стороны, квазистационарные процессы играют важную роль в познании прохождения электрического тока жидких веществ, обладающих свойствами е, ц и V. С другой стороны, быстропеременные во времени процессы, взаимосвязанные с электромагнитным излучением источника и взаимодействием с веществом на границе раздела фаз металл-электролит, зависящие от концентрации по времени, изменяющей электропроводность, зависящие от концентрации, плотности тока и поляризации , а также существование изменяющегося двойного электрического слоя на границе раздела двух фаз позволяют рассматривать электродную систему как бесконечно изменяющуюся в пространстве и времени под воздействием постоянно действующего возмущения. Рассматривая такую систему, отметим, что между электродами п электролитом происходит обмен энергии, имеет место переход материн иоп частицы с электрода в электролит и из электролита в электрод. Почи), ижу во всяком потоке электромагнитного излучения заключается не только определенная энергия, но и определенный импульс, всегда совпадающий с направлением излучения, то, следовательно, квант энергии заключает в себе определенный квант импульса, который и сообщает материальной частице толчок, совершая таким образом работу выхода материальной частицы. При переходе заряженной частицы с поверхности электрода в электролит происходит потеря (отражение) энергии, зависящая от диэлектрических и магнитных свойств среды, под влиянием которых существует та или иная контактная разность потенциалов электрод—электролит. С точки зрения волновой теории отражение происходит без изменения длины волны. Исходя же из квантовой теории длина волны может изменяться, если изменится размер кванта энергии. [c.60]

    Если скорость электродного процесса ограничена скоростью реакции, которая включает переход частиц из формы, в которой они находятся на одной стороне двойного электрического слоя, в форму, которую они приобретают на другой стороне слоя, что требует определенной энергии активации, то говорят об активационном перенапряжении. Оно представляет собой сумму перенапряжения переноса заряда, реакционного перенапряжения и перенапряжения кристаллизации. Другими словами, это общее перенапряжение за вычетом диффузионного. Реакционное перенапряжение возникает на стадии химической реакции и не зависит от скорости переноса зарядов через границу раздела электрод/раствор. Такое перенапряжение, например, имеет место при протекании реакции РЬ(ОН)з" РЬ " + ЗОН", которая предшествует восстановлению иона РЬ ". Перенапряжение кристаллизации связано с медленным внедрением ионов в кристаллическую решетку или с медленным выходом из нее. Часто для обозначения активационного перенапряжения используют термин кинетическая поляризация (АЕкии). [c.135]


Смотреть страницы где упоминается термин Поляризация на границах раздела: [c.297]    [c.297]    [c.241]    [c.87]    [c.466]    [c.158]   
Смотреть главы в:

Физика и химия твердого состояния органических соединений -> Поляризация на границах раздела


Физика и химия твердого состояния органических соединений (1967) -- [ c.628 , c.629 ]




ПОИСК





Смотрите так же термины и статьи:

Границы раздела фаз



© 2024 chem21.info Реклама на сайте