Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Схема перегонки фракционной

    Таким образом, схема перегонки мазута в двух вакуумных колоннах имеет следующие преимущества установка может работать по топливной и по масляной схеме можно получать более качественные масляные дистилляты (заданного фракционного состава) более эффективно используется избыточное тепло в двух вакуумных колоннах пяти — шести промежуточных циркуляционных орошений. К недостаткам двухколонных вакуумных установок относятся значительный расход металла на изготовление дополнительной аппаратуры и коммуникаций некоторые осложнения при эксплуатации установки увеличение капиталовложений на строительство и дополнительную аппаратуру. [c.36]


Рис. 17-28. Схема проведения фракционной перегонки Рис. 17-28. <a href="/info/647484">Схема проведения</a> фракционной перегонки
    По мере испарения исходной смеси содержание легколетучего компонента в дистиллате постепенно уменьшается. В случае необходимости получения различных фракций перегнанной жидкости первые и последние порции дистиллата отводят в разные сборники. Такая технологическая схема называется фракционной перегонкой. [c.710]

Рис. 28. Сравнение схем концентрирования фракционной перегонкой и методом химического обмена в колонке. Рис. 28. <a href="/info/29973">Сравнение схем</a> концентрирования <a href="/info/48827">фракционной перегонкой</a> и <a href="/info/10073">методом химического</a> обмена в колонке.
Рис. 17. Сравнение схем концентрирования фракционной перегонкой и путем химического обмена. Рис. 17. <a href="/info/29973">Сравнение схем</a> концентрирования <a href="/info/48827">фракционной перегонкой</a> и <a href="/info/89820">путем химического</a> обмена.
    Важнейшей характеристикой нефтяных смесей является фракционный состав, определяемый температурными пределами выкипания всей смеси и составляющих ее узких фракций при соответствующих отборах. Фракционный состав играет решающую роль при составлении и разработке технологических схем процесса первичной перегонки нефти и наряду с углеводородным и элементным составом нефти существенно влияет также на выбор схем последующих технологических процессов нефтепереработки. На основе фракционного состава нефти определяется потенциальное содержание в нефти целевых фракций, а на основе фракционного состава нефтяных фракций рассчитываются важнейшие эксплуатационные характеристики нефтепродуктов. [c.18]


    Вакуумная перегонка мазута является головным процессом поточной схемы масляного производства. При масляном варианте перегонки основная цель процесса — получить масля ные фракции заданной вязкости, удовлетворяющие также необходимым требованиям по цвету и температуре вспышки. Существующими нормами на производство масел, как известно, не ограничивается фракционный состав масляных фракций и допустимые пределы температур налегания соседних фракций. В связи с этим в настоящее время на отечественных заводах для производства масел используют дистилляты широкого фракционного состава, выкипающие в пределах 100°С и более, и гудроны с высоким содержанием дистиллятных фракций до 490 С. [c.184]

    Усовершенствование технологии перегонки бензинов обусловлено не только поиском оптимальных схем разделения, но и определением необходимого фракционного и углеводородного состава получаемых фракций, обеспечивающих максимальный выход ароматических углеводородов на установках каталитического риформинга. [c.216]

    Установка рассчитана на переработку нестабильной нефти Ромашкинского месторождения и отбор фракций и. к.—62, 62—140, 140—180, 180—220 (240), 220 (240)—280, 280—350, 350—500°С (остаток — гудрон). Исходное сырье, поступающее на установку, содержит до 5000 мг/л солей и до 2 вес. % воды. Содержание низкокипящих углеводородных газов в нефти достигает 2,5 вес. % на нефть. На установке принята двухступенчатая схема электрообессоливания, позволяющая снизить содержание солей до 30 мг/л и воды до 0,2 вес. %. Технологическая схема установки предусматривает двухкратное испарение нефти. Головные фракции из первой ректификационной колонны и основной ректификационной колонны вследствие близкого фракционного состава получаемых из них продуктов объединяются и совместно направляются на стабилизацию. Бензиновая фракция н. к.— 180 °С после стабилизации направляется на вторичную перегонку с целью выделения фракций н. к. — 62, 62—140 и 140—180 °С. Блок защелачивания предназначается для щелочной очистки фракций н. к.—62 (компонент автобензина) и 140—220 °С (компонент топлива ТС-1). Фракция 140— 220 °С промывается водой, а затем осушается в электроразделителях. [c.114]

    Технологическая схема одной из существующих установок вторичной перегонки бензина приведена на рис. П-5. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом 37 прокачивается через теплообменники 24, 31 -л 34 ъ подается в первый змеевик печи 4, а затем в ректификационную колонну 3. Головной продукт этой колонны — фракция н. к. — 85 °С, пройдя аппарат воздушного охлаждения 5 и холодильник 6, поступает в приемник 7. Часть конденсата насосом 8 подается как орошение на верх колонны 3, а остальное количество — в колонну 9. Снабжение теплом нижней части колонны 3 осуществляется циркулирующей флегмой (фракция 85— 180°С), прокачиваемой насосом 2 через второй змеевик печи 4 и подается в низ колонны 3. Остаток с низа колонны 3 направляется насосом 1 в колонну 20. [c.18]

    Меры, принимаемые старшим оператором для регулирования технологического режима, проследим на конкретном примере. Пусть на атмосферной трубчатой установке, работающей по двухколонной схеме, при перегонке нефти из второй колонны должны быть получены пары бензина в качестве головного продукта, три боковых продукта — авиационный керосин, зимнее и компонент летнего дизельного топлива, отбираемые из соответствующих отпарных секций, и в качестве остатка — мазут. Допустим, что по данным лабо- раторных анализов бензиновая фракция, отбираемая сверху колонны, имеет следующий фракционный состав температуры 50% и 90% отгона соответственно составляют 110 и 148° С, а конец кипения 168° С, тогда как межцеховыми нормами задано получать бензин с концом кипения не выше 160° С и температурой 90% отгона не более 145° С (температура 50% отгона не нормирована). [c.339]

    При выборе технологической схемы и режима атмосферной перегонки нефти руководствуются главным образом ее фракционным составом и, прежде всего, содержанием в ней газов и бензиновых фракций. [c.43]

    Вакуумная перегонка мазута. Основное назначение установок вакуумной перегонки (ВП) мазута топливного профиля - производство вакуумного газойля широкого фракционного состава (350 -500 С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза, а в некоторых случаях - термического крекинга с получением дистиллятного крекинг-остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов специальной (игольчатой) структуры. Помимо фракционного состава, вакуумный газойль должен удовлетворять требованиям по коксуемости и содержанию металлов, которые существенно влияют на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Типовой процесс ВП мазутов (рис. 2.5) обычно осуществляют по схеме однократного испарения в одной тарельчатой, а в последние годы и насадочной колонне при температуре 380 - 415 °С с подачей в низ колонны водяного пара при остаточном давлении в зоне питания 100 - 200 мм рт. ст. (133 - 266 гПа) и в верху колонны 60 - 100 мм рт. ст. (53 - 133 гПа). [c.47]


    Гач перегоняют в вакууме с целью улучшения фракционного состава сырья, из которого получают парафин, в частности парафин для производства СЖК. Из остатка от перегонки гача, выкипающего при температуре выше 460 °С, получают парафин, предназначенный для производства сх-олефинов. Недостаток схемы — производство в первую очередь смазочных масел парафин является побочным продуктом. [c.111]

Рис. ХП-8. Схема установки для фракционной перегонки Рис. ХП-8. <a href="/info/13990">Схема установки</a> для фракционной перегонки
    Легкое по фракционному составу сырье, полученное прямой перегонкой нефти, выдерживает жесткую высокотемпературную обработку без значительного коксования. Возможность проведения процесса при однократном пропуске сырья через печь, не прибегая к рециркуляции, весьма существенно упрощает технологическую схему процесса. [c.172]

    В основе фракционной перегонки, служащей разделению компонентов смеси жидкости, лежит различие их температур кипения. Схема прибора для проведения этого разделения изображена на рис. 8.10. [c.177]

Рис. 8.10. Схема прибора для фракционной перегонки Рис. 8.10. <a href="/info/855414">Схема прибора</a> для фракционной перегонки
    Нефти Советского Союза весьма разнообразны но фракционному и химическому составу. Это необходимо учитывать при выборе схемы переработки сырой нефти того или иного месторождения на товарные продукты. Кроме того, с каждым годом растет добыча нефти на новых площадях и в новых нефтяных районах. Поэтому важной задачей является всестороннее исследование состава и свойств нефтей и продуктов ее прямой перегонки. В зависимости от места и цели такого исследования оно может проводиться в разных масштабах и по различным программам (схемам). [c.75]

    Выход каменноугольной смолы составляет около 3% от веса каменного угля. Сначала смолу очищают фракционной перегонкой. Каждую фракцию экстрагируют щелочью для отделения слабокислых ароматических оксисоединений (фенолов) и обрабатывают разбавленной минеральной кислотой для извлечения азотсодержащих оснований, а затем снова фракционируют. Важнейшие углеводороды, получаемые в промышленности из каменноугольной смолы, приведены ниже (см. схему) в порядке возрастающих температур кипения температуры плавления указаны для соединений, которые при обыкновенной температуре являются твердыми веществами. [c.153]

    Концентр и рован ие стабильных изотопов методом фракционирования чаще всего осуществляется перегонкой на фракционных колонках. Из-за необходимости совмещения на колонке очень большого, числа теоретических тарелок колонки для разделения смесей изотопов отличаются рядом конструктивных особенностей. Схема колонки для фракционной перегонки смеси соединений изотопов изображена на рис. 8. [c.39]

    Переработка нефти направлена, во-первых, на получение горючего для транспортных средств путем фракционной перегонки, а во-вторых, на производство сырья для основных продуктов химической промышленности и нефтехимии. Благодаря тесным производственным связям между отраслями, многоцелевые нефтехимические установки способны осуществлять целый ряд технологических процессов. Большинство органических полупродуктов и конечная продукция, применяемая или производимая в отраслях химической промышленности, изготавливается именно на основе продуктов нефтехимии (схемы 1 и 2). [c.63]

    Такая аппаратура обладает большой разделительной способностью. При большом количестве переносов отношение ячеек, содержащих вещество, к общему числу ячеек сильно уменьшается. Количество переносов можно также увеличить способом, напоминающим орошение при фракционной перегонке. Рассмотрим в качестве примера следующий опыт. Смесь веществ с очень близкими значениями коэффициентов распределения (лучше около 0,1—0,3) разделяют сначала по основной схеме противоточного распределения, например с 220 переносами. Пусть по окончании этой операции смесь окажется сосредоточенной в первой трети всех ячеек в остальных ячейках, содержащих к этому моменту уже обе фазы, растворенные вещества практически отсутствуют. Затем в первую ячейку перестают доливать свежую верхнюю фазу и соединяют ее с последней ячейкой всей системы. Получается замкнутый круг, по которому с каждым новым переносом передвигается верхняя фаза. Таким образом, верхняя фаза циркулирует в аппаратуре до тех пор, пока не будет достигнута требуемая степень разделения. Количество переносов, осуществимое в такой аппаратуре, зависит от коэффициента распределения разделяемых веществ и от количества ячеек. Так, например, для К = 0,2 можно осуществить 8000 переносов, для /С = 0,1 —до 14 800 переносов в одном эксперименте. При большем числе переносов разделенные вещества стали бы опять смешиваться друг с другом. [c.427]

    Третий способ получения фракции 200—320° С — это вторичная перегонка товарного дизельного топлива (фракция 180—360° С) с получением, кроме целевой фракции, головки (фракция до 200° С) и утяжеленного остатка (фракция выше 320° С). Такая перегонка может быть осуществлена на специальной ректификационной установке, состоящей из одной или двух колонн. Выбор технологической схемы этой установки (см. рисунок. В) сделан, исходя из следующих критериев отбор и фракционный состав целевой фракции 200—320° С, минимальное число ступеней разделения, температура сырья на входе в колонну. [c.42]

    Однако полного совпадения фракционного состава продуктов по пяти рассчитанным схемам получить не удалось, особенно во фракционных составах дизельного топлива и мазута, т. е. в области температур, где остаток перегонки отделяется от суммы светлых. Содержание примесей, соответственно, выше 360° С в дизтопливе и ниже 360 С в мазуте приведено в табл. 2. [c.74]

    Для углубления отбора масляных фракций и получения утяжеленных остатков рекомендуют различные схемы перегонки с дав лением в зоне питания не выше 26—40 гПа. При одноколонной схеме целесообразно использовать рецикл тяжелой флегмы— 10% на исходный мазут с глухой тарелки над вводом сырья через печь в колонну [74]. При давлении в зоне питания не более 26 гПа необходимое качество остатка обеспечивается без применения водяного пара в качестве отпаривающего агента, так как в области низкого давления температуры кипения масляных фракций - снтгжаются настолько резко, что дальнейшее понижение парциального давления углеводородов уже не требуется. При низком давлении перегонки можно использовать также и глухо подогрев гудрона в теплообменниках для создания парового орошения в низу колонны [28]. Вывод тяжелой флегмы с глухой тарелки с рециркуляцией ее в сырье до печи утяжеляет фракционный состав гудрона, обеспечивает достаточную четкость разделения и высокий отбор от потенциала вакуумного газойля. Разделение с выводом флегмы с глухой тарелки без рециркуляции позволяет получать еще более утяжеленные остатки. [c.193]

    Мазут — остаток атмосферной перегонки нефти — перегоняется на самостоятельных установках вакуумной перегонки или на вакуумных секциях атмосферно-вакуумных трубчаток (АВТ). На современных вакуумных установках применяют следующие технологические схемы перегонки мазута однократного испарения всех отгоняемых фракций в одной вакуумной колонне однократного испарения с применением отпарных колонн двухкратного испарения отгоняемых фракций в двух вакуумных колоннах. Получаемые при вакуумной перегонке мазута дистилляты могут быть использованы в качестве сырья каталитического крекинга (работа по топливной схеме) и в качестве фракций для производства масел (работа по масляной схеме). При работе по топливной схеме на установке получается одна широкая фракция, направляемая в качестве сырья (широкого вакуумного отгона) на установки каталитического крекинга. Если вакуумная перегонка ведется с целью получения масляных дистиллятов, то к качеству получаемых фракций и в частности к их фракционному составу предъявляются более жесткие требования. На установках, запроектированных и построенных в последние годы, предусматривается получение двух масляных фракций 350—420 °С и 420—490 °С (для типового сырья из ромашкинской и туймазинской нефтей). Далее путем компаундирования можно получить на их основе различные масляные фракции. [c.32]

    Фракции Л Л ж ТТ в свою очередь извлекаются свежими порциями легкого или более тяжелого растворителя. В том же духе продолжают дальше. Крайние фракции, например ЛЛЛ и ТТТ, постоянно обогащаются веществом или Л. Промежуточные фракции все время сливаются друг с другом и, наконец, вследствие постоянного понижения абсолютной концентрации концентрируются путем перегонки или отбрасываются. Янтцен [67] приводит схему такого фракционного разделения.  [c.94]

    Большая часть вакуумных установок, построенных ранее, эксплуатируется по схеме однократного испарения (рис. 11). Мазут из ректификационной колонны атмосферной части насосом 1 прокачивается через трубчатую печь 2 и подается в вакуумную колонну 3. В колонне 3 протекает однократное испарение мазута, нагретого до 415—420 °С. Перегонка мазута осуществляется с водяным паром. Боковые погоны — вакуумные дистилляты — отбираются с определенных тарелок насосами I и направляются через теплообменники 4 и холодильники 5 в соответствующие емкости. При получении в вакуумной колонне однократного испарения двух или трех масляных дистиллятов их качество по фракционному составу не обеспечивается происходит значительное налегание однократного испарения соседних фракций по температурам кипения. Нередко в мазуте прямой перегонки остается сравнительно низкоки- [c.32]

    Фракционный состав многокомпонентной системы твердых углеводородов, образование кристаллов той или иной формы, а также эвтектических смесей оказывают большое влияние н на качество получаемых парафинов. При депарафинизации рафинатов широкого фракционного состава затрудняется процесс обезмасли-вания гачей, и для получения твердых углеводородов с определенной совокупностью свойств в ряде случаев в схеме масляного производства приходится предусматривать вторичную вакуумную перегонку гача, что снижает экономичность производства пара-, финов. [c.137]

    В программах № 1 и № 2 значительное место занимают анализы, связанные с перегонкой и ректифтсацией нефти и ее фракций. На рис. 1.1 приведена схема анализа образца нефти в той части, где применяются эти методы. Как видноJ з этой схемы, исходный образец нефти ТСУ раз подвергается перегонке и ректификации один анализ - по ГОСТ 2177 - 82, 4 раза - по однократному испарению и 5 раз ректификации в аппарате АРН-2 (по ГОСТ, 11011 - 64). Кроме того, полученные на этой первой стадии перегонок фракции или их компаунды подвергаются в дальнейшем анализу фракционного состава по ГОСТ 2177 - 82 или ГОСТ 10120 - 71 в колбе Богданова (всего 27 анализов). [c.6]

    Для получения низкозастывающих реактивных и дизельных топлив, масел и товарного нефтяного парафина (мягкого или твердого) при сочетании процесса карбамидной депарафинизации с другими процессами разработаны технологические схемы пере работки различного нефтяного сырья, в которых карбамидная депарафинизация является одним из головных процессов. Так, схема получения широкого ассортимента смазочных масел с ис-п( зованием методов гидрирования и карбамидной депарафинизации разработана А. В. Дружининой с сотр. [106]. По этой схеме (рис. 62) широкая дистиллятная фракция прямой перегонки или каталитического крекинга подвергается гидрированию, а затем депарафинизации карбамидом. Депарафинированное сырье подвергается вакуумной разгонке с отбором товарных масляных фракций. Авторы показали, что депарафинизация карбамидом гидрированных дистиллятов широкого фракционного состава сопровождается полным удалением парафинов нормального строения, а температура застывания масляных фракций после депарафинизации определяется содержанием высокозастывающих изопарафинов и других углеводородов, восприимчивых к де-нрессорным присадкам. [c.173]

    Мембранные методы разделения компонентов нефти в настоящее время в нромышленности не применяются, и непосредственное выделение из нефти АС с помощью мембран, вероятно, нока невозможно. Однако в общей схеме перспективных методов переработки нефти использование мембран весьма перспективно. Фракционная перегонка нефтп, предложенная почти 100 лет назад, остается практически в неизменном техноло- [c.107]

    При более высоких глубинах превращения (до 80%) наблюдается повышенный выход кокса. В этих условиях [100, 101] каталитическому крекингу целесообразно подвергать смесь коксового дистиллята и прямогонного сырья либо осуществлять предварительную гидроочистку коксового дистиллята. При крекинге гидро-очищенного газойля коксования (фракция 320—460 С) выход бензина выше, чем нз прямогонного сырья того же фракционного состава, бензин и легкий газойль крекинга содержат мало серы, значительно снижается выход кокса в процессе. Хорошие результаты получены также при крекинге коксового газойля, очищенного фурфуролом [66, 67]. Несомненный интерес представляет наряду с легкими и тяжелыми газойлями прямой перегонки и каталитического крекинга использование в качестве сырья гидрокрекинга керосино-газойлевых фракций коксования. В этом случае процесс коксования удачно вписывается в схему НПЗ как метод получения кокса и сырья, для гидрогенизационных процессов. В результате становится возможным использовать активные катализаторы, меньше расходовать водорода, чем при гидрокрекинге остаточного сырья, например деасфальтизата, получаемого в процессе добек [206]. Тяжелые остатки процесса гидрокрекинга могут применяться в качестве компонентов малосернистых котельных топлив. [c.136]

    Данные табл. 2 показывают, что четкость ректификации по содержанию примесных фракций в целевых дистиллятах во всех случаях значительно выше при перегонке нефти по схеме V. Особенно заметно это при выделении легких фракций н. к. — 70° С (сырья газофракционнрующих установок) и 70—140° С (легкого компонента бензина, где содержание примесей отличается в пользу схемы V в 4—5 раз). Намного лучше получается четкость разделения на границе дизельное топливо—мазут в схеме V. Так, содержание примесей в дизельном топливе в схеме V в 20—40 раз меньше, а в мазуте в 2 раза. При этом наличие в схеме V колонны Кфи позволяет регулировать в широких пределах как отбор, так и качество по фракционному составу дизельного топлива (за счет более высокой кратности орошения в этой колонне). [c.75]

    В случае проведения периодической ректификации при постоянном флегмовом числе R = onst) состав получаемого дистиллята изменяется во времени. Этот способ более широко применяется в производственных условиях. При этом, как правило, проводят так называемую фракционную перегонку, когда получаемый дистиллят собирают по фракциям определенного состава в отдельные сборники. Один из возможных вариантов такой схемы показан на рис. 17-28. [c.129]


Смотреть страницы где упоминается термин Схема перегонки фракционной: [c.710]    [c.510]    [c.11]    [c.460]    [c.27]    [c.337]    [c.111]    [c.223]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.129 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте