Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Режимы движения жидкости (газа)

    Режим движения жидкости (газа) зависит от соотношения сил инерции и сил вязкости (внутреннего трения) в потоке. Это соотношение характеризуется безразмерным критерием — числом Рейнольдса  [c.174]

    Следует отметить, что при движении жидкости (газа) через зернистый слой турбулентность в нем развивается значительно раньше, чем при течении по трубам, причем между ламинарным и турбулентным режимами нет резкого перехода. Ламинарный режим практически существует примерно при Re < 50. В данном режиме для зернистого слоя X = A/Re [ср. с уравнениями (11,91) и (И,112)1. [c.104]


    В связи с этим большинство расчетных зависимостей для Куу получено для условий, когда скорость внутренней массоотдачи настолько велика, что отношением т/р у можно пренебречь и принять Куу = Р 1/- Для определения уу, на значение которого значительно влияет гидродинамический режим движения потока газа (жидкости), могут быть использованы следующие расчетные уравнения  [c.572]

    Гидродинамический режим движения жидкости и газа в электролизере  [c.4]

    При движении твердого тела в жидкости (газе) на границе между поверхностью тела и жидкостью возникает трение, в результате скорость жидкости на самой поверхности по отношению к скорости самого твердого тела равна нулю, т. е. слой жидкости на этой поверхности как бы прилипает к ней и движется вместе с твердым телом. На небольшом расстоянии от поверхности тела режим движения жидкости ламинарный. Тело( частица) может двигаться по отношению к газу (жидкости) сравнительно медленно, т. е. в ламинарном режиме. Этот режим для случая движения твердого тела (частицы) в газе (жидкости) соответствует критерию Рейнольдса С 2 (рис. 48). [c.72]

    Струйные тарелки (рис. 18) создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. При невысоких скоростях газа (пара) тарелки работают в барботажном режиме, кроме того, при малых скоростях пара наблюдается провал жидкости. Минимально допустимая скорость по газу в отверстиях чешуек составляет 7 м/с. При повышении скорости барботажный режим переходит в струйный (капельный), при этом сплошной фазой становится газ (пар), а жидкость распыляется на капли. Этот режим отвечает наибольшей поверхности контакта фаз и является рабочей областью, скорость пара в отверстиях при этом выше 12 м/с. Тарелки рекомендуются для разделения загрязняющих сред. Ы [c.64]

    Взаимодействие между фазами осуществляется на поверхности смоченных элементов насадки. Этот режим может заканчиваться в первой точке перегиба, в так называемой точке торможения газа, при этом скорость газа уменьшается из-за относительно большой скорости жидкости, движущейся противотоком эта точка лежит тем выше, чем больше плотность орошения. Однако точка торможения не всегда четко обнаруживается. После нее можно наблюдать возникновение промежуточного режима, наблюдаемого при струйчато-пленочном движении жидкости. Жидкость покрывает насадку в виде стекающей тонкой пленки и отдельных струй. Взаимодействие между фазами происходит на поверхности пленки и струй жидкости и в точках контакта жидкости с отдельными элементами насадки. Пленка и струи жидкости подтормаживают поток газа с образованием отдельных вихрей. [c.388]


    Слой сыпучего материала можно рассматривать как систему поровых каналов, по которым движется газ или жидкость. Режим движения среды в поровых каналах может быть ламинарным, переходным и турбулентным в зависимости от величины числа Рейнольдса [c.358]

    В настоящее время для расчета массообменных аппаратов широко используются представления об идеализированных моделях. Чаще всего принимают, что поток жидкости или газа в аппарате можно представить моделью идеального вытеснения или полного смешения. В реальных реакторах режим движения потоков никогда не удовлетворяет полностью этим идеализированным моделям и носит промежуточный характер. Поэтому желательно оценить отклонение реального потока от идеального. [c.157]

    Равномерный режим работы колпачковых тарелок характеризуется полным раскрытием прорезей всех колпачков и струйным движением пара (газа) через жидкость. [c.691]

    Захлебывание насадок. Между газом и жидкостью, движущейся по насадке, возникают силы трения, которые увеличиваются с возрастанием относительной скорости движения газа и жидкости. В случае противотока газа и жидкости силы трения, действующие на жидкость, направлены вверх, т. е. противоположны направлению действия силы тяжести. Эти силы трения возрастают с увеличением скорости газа до некоторого предела, когда они становятся равными силе тяжести, действующей на жидкость. При этом движение жидкости по насадке начинает тормозиться потоком газа. Такой режим работы колонны — режим подвисания начинается по достижении некоторой предельной скорости газа, называемой пределом подвисания. В этих условиях газ начинает барботировать через жидкость (стр. 599), и поверхность соприкосновения между газом и жидкостью значительно возрастает, что приводит к интенсификации процесса массообмена. Однако одновременно в колонне резко увеличивается гидравлическое сопротивление. [c.610]

    При относительно небольших скоростях газа (пара) и их увеличении вплоть до скоростей, отвечающих точке А, жидкость на тарелке практически не удерживается. Соответствующий режим движения фаз называется режимом смоченной тарелки . В этой области сопротивление тарелки несколько превышает сопротивление сухой тарелки вследствие того, что часть сечения отверстий т занята стекающей жидкостью. При различном орошении гидравлическое сопротивление тарелки в логарифмических координатах выражается в виде пря- [c.251]

    Режим движения газожидкостной смеси при Шг < ОЛ м/с можно назвать пузырьковым. При увеличении скорости газа, а соответственно и скорости циркулирующей жидкости, что характерно для газлифтных реакторов, газожидкостная смесь [c.85]

    При дальнейшем увеличении скорости газа в вертикальной трубе движение пленки жидкости обращается, и она начинает всползать снизу вверх. Наступает режим восходящего прямотока газа и жидкости. Гидравлическое сопротивление при этом сначала снижается (по сравнению с сопротивлением, отвечающим точке захлебывания) до некоторого минимального значения, а затем снова возрастает. При увеличении скорости газа выше 15—40 и сек начинается брызгоунос, при котором жидкость отрывается от поверхности пленки и уносится газом в виде брызг. [c.116]

    Выше отмечалось, что при движении жидкостей и газов наблюдаются два режима ламинарный и турбулентный. При ламинарном (слоистом) движении жидкости в трубопроводе частицы перемещаются в направлении основного потока, не имея скоростей в поперечном направлении. Частицы движутся упорядоченно, хотя и имеют местные вращения, так как скорость в сечении потока вязкой жидкости распределяется неравномерно (рис. 1.34). Ламинарным называется такой режим движения, при котором в результате вязкого взаимодействия происходит сдвиг отдельных слоев жидкости, не приводящий к их перемешиванию. [c.52]

    Рассмотрим некоторые вопросы переноса массы внутри одной фазы, т.е. от ядра потока к границе раздела фаз или наоборот-от границы раздела фаз в ядро потока. Полагаем, что в нашем случае процесс массопереноса происходит между газом и жидкостью (процесс абсорбции, т.е. массоперенос идет из фазы в фазу Ф ), режим движения турбулентный. [c.16]

    Четвертый режим (от точки С на рис. 16-12 и выше)-режим уноса, или обращенного движения жидкости, выносимой из аппарата газом. Этот режим в технике не используется. [c.61]

    Поперечная неравномерность потока. Здесь характерным является различие скоростей в различных точках поперечного сечения (рис. 8.3). В результате разные элементы потока пройдут РЗ за разное время. Примеры ламинарный режим течения жидкости в круглой трубе — параболический профиль скоростей движение части газа через псевдоожиженный слой в ввде пузырей — они проходят через слой быстрее, нежели остальной газ в просветах между псевдоожижаемыми твердыми частицами. [c.611]


    В тарельчатых аппаратах жвдкость располагается на тарелках тонким слоем от 10 до 60-70 мм и перетекает с тарелки на тарелку либо через специальное переливное устройство, либо проваливаясь в отверстия тарелки. Несмотря на практически полное перемешивание жидкости на каждой тарелке, при разнонаправленной подаче газа и жидкости в целом по аппарату удается получить режим движения газа и жидкости, близкий к поршневому противоточному режиму (см. рис. 1.4.1.1, г). [c.27]

    При восходящем прямотоке газа и жидкости через неподвижный зернистый слой выделяют, как и при нисходящем, режим сплошной жидкости и режим сплошного газа, а также переходный, включающий элементы обоих видов движения. Граница перехода от режима сплошной жидкости к режиму сплошного газа рассчитывается по соотношению  [c.575]

    Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса теплоты. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется вследствие теплопроводности. При турбулентном режиме такой способ переноса теплоты сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуществляется благодаря интенсивному перемешиванию частиц жидкости. В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказьшается определяющим. Следовательно, как для ламинарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье (уравнение (5.3)). [c.181]

    Конве1сция жидкости (газа) может быть вынужденной либо свободной. В теплообменных аппаратах наблюдается вынужденная кон векция /КИДКОСТИ. Режим движения жидкости в них может быть ламинарным, переходным либо турбулентным. [c.149]

    Режим движения жидкости и газа определяется значениями их приведенных скоростей Шцр, и аУцр. г- Жидкостные перемычки образуются, когда сила сопротивления, пропорциональная кинетической энергии потока газа, уравновешивает силу тяжести. В качестве обобщенных переменных при обработке опытных данных принимаются безразмерные величины [c.172]

    Для газов плотность примерно на три, а вязкость на 1,5 2 порядка ниже, чем для капельных жидкостей. Так, прн нормальных температурах 1000/сг/л , Рд эд < г 1,29 кг/л , Цн (зг 0,001 к-сек/л , 0,00002 н.сек/л . Соответственно я 1-10 , а Гвозд 15-10" мУсек. Поэтому Квкр и турбулентный режим движения для газов достигаются при значительно ббльших скоростях, чем для капельных жидкостей (при равных (1). [c.42]

    Перемещение реагентов к реакционной поверхности существенно зависит от скорости (ы) движения жидкости (газа) вдоль твердой поверхности Если ы=0, перенос к поверхности оЬуществляет-ся только за счет молекулярной диффузии. При ламинарном движении потока перенос реагентов к поверхности из глубины жидкости (по нормали к направлению движения жидкости) также осуществляется только молекулярной диффузией. Если величина и достаточно велика, то на направленное движение накладывается хаотическое движение отдельных небольших объемов жидкости, затухающее вблизи стенки канала. Такой режим движения называют турбулентным. Вблизи стенки На расстояниях б, меньших 10vжRe /и ( ж — кинетический коэффициент вязкости жидкости, ему сек Не — критерий Рейнольдса и — скорость потока, см/сек), движение жидкости, по-видимому, ламинарно [10]. На расстояниях от стенки, превышающих б, вещество переносится по нормали к потоку хаотическими пульсациями жидкости, а у стенкИ в слое толщиной б — молекулярной диффузией. [c.104]

    Действительно, давно было замечено, что при ожижении твердых частиц газами псевдоожиженный слой не однороден [189]. Он представляет собой слой взвешенных частиц с достаточно низкой порозностью, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. Во время подъема пузыри могут увеличиваться в размерах, коалесцировать, что иногда приводит к образованию поршневого режима псевдоожижения, представляющего собой чередование сгустков частиц и газовых полостей, занимающих все сечение аппарата. Поршневой режим движения твердой фазы наблюдается также и при транспортировании твердых частиц газом в вертикальных трубах. Ряд авторов, первым из которых бьш, по-видимому, Уоллис [94], вьщвинули предположение, согласно которому пузыри и поршни являются следствием нарастания всегда присутствующих в потоке малых возмущений порозности. Однако в экспериментах неустойчивость наблюдается далеко не во всех дисперсных потоках. Так, ожи-жаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указьгеают на явный переход от однородного режима псевдоожижения к пузырьковому в случае увеличения скорости газа [190]. Не наблюдаются неоднородности и при движении небольших капель и пузырей в жидкостях. [c.134]

    Промежуточный режим наблюдается при пленочно-струйном движении. Жидкость покрывает насадку в виде тонкой пленки, причем значительная доля поверхности остается несмоченной. Пленка и струи жидкости затормаживают поток газа с образованием отдельных вихрей. Этому режиму соответствует линия бв на рис. Х-14. Вторая точка перегиба (а) — точка подвисання жидкости. В этой точке устанавливается скорость газа (пара) аиу, при которой жидкость начинает удержи- [c.682]

    При установившемся движении среды гидравлическое сопротивление трения трубы зависит от режима течения. Известно, что до тех пор, пока значение числа Рейнольдса не достигает критического Квир. режим течения сохраняется ламинарным. Для течения в круглой цилиндрической трубе обычно Ке р = 2320. Переход от одного режима течения к другому происходит вследствие нарушения устойчивости движения среды. Теория гидродинамической устойчивости движения жидкостей и газов пока разработана только для отдельных видов течений, причем вопросы о причинах неустойчивости потоков в трубах освещены еще недостаточно. Результаты экспериментальных исследований гидродинамической устойчивости ламинарных течений в трубах позволяют считать что при колебаниях потока с безразмерной частотой й 10 лами нарный режим сохраняется, если число Рейнольдса Ке = вычисленное по средней о, за период колебания-скорости, не пре восходит критического числа Рейнольдса, полученного для уста повившегося потока, а вычисленное по амплитуде колебаний [c.255]

    Выброс из клапана типа НДКМ направлен вниз, причем на выходе из клапана газовая смесь проходит через кассеты огнепреградителя, разбиваясь в гасящих каналах на отдельные струйки, имеющие ламинарный режим движения. По этой причине струя газа, как поток жидкости, выливается на крышу резервуара, обволакивает его, стекает в обваловку и скапливается на прилегающей территории без интенсивного перемешивания с окружающим воздухом. [c.86]

    Барботажный режим контакта возникает ири больших расходах жидкости, когда образуется слой жидкости ири переходе ее от обтекателей 10 к стенкам контактных элементов 3- Рас-пылнвающпй режим контакта образуется аналогично, ио ири малых расходах ио жидкости, тогда жидкость срывается с краев обтекателей 10 ъ виде каиель. Пленочный режим контакта наблюдается ири дальнейшем движении жидкости ио внутренним стенкам контактных элементов 3 в виде иленки. На выходе из контактных элементов 3 жидкость, стекающая пленкой ио их стейкам, дробится иа капли байпасирующим потоком газа, поступающим поперек или навстречу пленке жидкости к выходным концам /5 контактных элементов 3 но зазорам 12 между контактными элементами 3 и патрубками 13, нижние кромки 14 которых расположены ниже выходных концов /5 [c.15]

    Вентури 7 через отверстие 9 из камеры 8 откачивается газ и в камере создается разрежение. На поддержание разрежения расходуется часть кинетической энергии движущейся жидкости. Кроме того, за счет снижения статического давления в горловине соила снижается равновесное давление насыщенных иаров жидкости. Из жидкости выделяются в виде газовых пузырьков легкокипящие комиоиепты, движение жидкости переходит в кавитационный режим, которому свойственна диссниация (рассеивание) кинетической энергии. Поскольку ири ирохождении горловины 10 соила Вентури 7 кинетическая энергия жидкостного иотока снижается, скорость движения жидкости вдоль коллектора иосле соила уменьшается и часть жидкости иод действием силы тяжести выводится из коллектора 5 через выходное отверстие 6, расположенное в нпжней части коллектора, в емкость 1. [c.98]

    Разработка проблем, связанных с устойчивостью однородных дисперсных потоков, описываемых двухскоростной континуальной моделью, еще далека от завершения. С точки зрения практических задач, решение проблемы устойчивости позволило бы получить научно обоснованные закономерности для определения границ существования однородных режимов течения. Давно замечено, что однородные режимы движения частиц при некоторых условиях нарушаются. Так, при ожижении твердых частиц газами при нормальных давлениях псевдоожиженный слой неоднороден. Он представляет собой слой взвешенных частиц с пористостью, близкой к пористости плотноунакованного слоя, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. В аппаратах и трубах небольшого размера движение твердых частвд в газах сопровождается образованием газовых полостей, занимающих все сечение аппарата (так называемый поршневой режим движения твердой фазы). Установлено, что пузыри и поршни являются следствием нарастания малых возмущений пористости, т. е. проявляющейся неустойчивости потока твердых частиц. Однако неустойчивость наблюдается далеко не во всех дисперсных потоках. Ожижаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указывают на явный переход от однородного режима псевдоожижения к пузырьковому. При снижении давления не наблюдаются неоднородности при движении эмульсий в несмешивающихся жидкостях и небольших (до мм) пузырьков. В [26] показано, что причиной неустойчивости двух взаимодействующих фаз в дисперсных потоках является инерция частиц. Небольшое локальное увеличение концентрации частиц в потоке в соответствии с безынерционным законом движения (см. уравнение (3.3.2.69)) должно приводить к локальному уменьшению скорости их движения. Однако частицы в реальных потоках в большей или в меньшей степени обладают инерцией и не могут изменить скорость мгновенно. Поэтому, следуя за возникшим уплотнением, они догоняют частицы, движущиеся в уплотнении с меш.шей скоростью, и, таким образом, возникшее возмущение нарастает. [c.194]

    Режимы движения газо-жидкостного потока. При малых приведенных скоростях газа (Vr < 0,1 м/с) в потоке жидкости распределены отдельные пузыри различных размеров, не зависящих от условий входа газа в трубу. Такой режим движения газо-жидкостной смеси в барботажных трубах газлифтного аппарата можно назвать пузырьковым. При увеличении скорости газа, а соответственно и скорости циркулирующей жидкости, газо-жидкостная смесь приобретает структуру динамической пены, состоящей из деформированньпс пузырей различных размеров, заполняющих весь объем трубы. Этот режим называют пенным. С дальнейшим увеличением скорости газа пенный режим переходит в стержневой, когда основная масса газа движется в центре трубы, окруженная кольцевым восходящим потоком жидкости. Стержневой режим наступает при скоростях газа более 10 м/с, при которых газлифтные аппараты обычно не работают. Переход от одного режима движения к другому происходит плавно, без проявления каких-либо кризисных явлений в гидродинамических характеристиках газо-жидкостной смеси. Подробнее о структурах двухфазного течения см. в 3.4.1. [c.520]

    Режим сильного взаимодействия, в котором происходит взаимодействие фаз, подразделяется на несколько промежуточных. В качестве сплошной фазы может выступать как жидкость (пузырьковый, дисперсный режим), так и газ (капельный). В сплошной фазе распределены включения дисперсной — пузыри и капли соответственно. Поршневой режим относится к сильному взаимодействию и представляет собой движение чередующихся газофазньсс и жидкофазных поршней с включениями дисперсной фазы. Существуют также режимы, переходные между основными. [c.575]

    Применение газовых холодильников конструкции Гипрококса с горизонтальными трубами обеспечивает более эффективное охлаждение газа, что вызывает значительное уменьшение его объема и, следовательно, улучшает режим работы нагнетателей газа и последующей аппаратуры цеха улавливания Охлаждение газа в этих холодитьниках может осуществляться не только водой, но и другими жидкостями, в частности поглотительным раствором сероочистки Отличительной особенностью технологической схемы охлаждения коксового газа с применением холодильников непосредственного действия является то, что охлаждение газа осуществляется непосредственным орошением надсмольной водой, при этом тепло газа передается соприкасающейся с ним о-лаждающей воде, которая нагревается до 70 °С Так как вода при этом насыщается аммиаком, то выпуск ее из холодильников приводил к потере аммиака и к загрязнению водоемов, что запрещается санитарными правилами Поэтому нагретая газом и насыщенная аммиаком вода находится в замкнутом цикле, охлаждаясь в чу)ун-ных или железных оросительных холодильниках, откуда снова подается на охлаждение газа В остальном путь движения газа и жидкости (газового конденсата) такой же, как и в схеме с трубчатыми холодильниками [c.194]


Смотреть страницы где упоминается термин Режимы движения жидкости (газа): [c.42]    [c.572]    [c.369]    [c.43]    [c.74]    [c.86]    [c.162]    [c.163]    [c.414]   
Смотреть главы в:

Гидромеханические процессы химической технологии -> Режимы движения жидкости (газа)

Гидромеханические процессы химической технологии Издание 3 -> Режимы движения жидкости (газа)




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости

Движение жидкости

Массопередача и гидродинамические режимы движения газа и жидкости



© 2025 chem21.info Реклама на сайте