Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практическое применение адсорбции и адсорбентов

    Практическое применение адсорбции. Адсорбция находит разностороннее применение. Мы уже упоминали о том, что при гетерогенном катализе как в газовой среде, так и в растворах процесс адсорбции реагирующих веществ твердым катализатором обычно играет решающую роль. Широко применяются твердые адсорбенты также и в различных процессах очистки газов или растворов от нежелательных примесей или загрязнений Сюда относится, в частности, применение активированного угля для противогазов, введенное благодаря работам Н. Д. Зелинского, спасшего этим много тысяч человеческих жизней. Сюда же относятся и многие процессы очистки и осушки различных газов в производственных условиях и, наконец, процессы осветления и обесцвечивания растворов в производствах сахара, глюкозы, нефтепродуктов, некоторых фармацевтических препаратов и др. [c.376]


    Наибольшее практическое применение получили периодические адсорбционные процессы в аппаратах с неподвижным слоем адсорбента. Для обеспечения непрерывности осушки газа предусматриваются три или два адсорбера. В первом случае в одном адсорбере проводят адсорбцию, в другом — десорбцию поглош,енного из газа вещества, в третьем — охлаждение адсорбента. При совмещении в одном аппарате циклов регенерации (десорбции) и охлаждения адсорбента устанавливают два адсорбера. [c.287]

    Гигроскопическая влага. Гигроскопическая влажность многих химических соединений и технических продуктов, как уголь, руда, глина и т. д., обусловлена адсорбцией воды на поверхности. Количество адсорбированного вещества, как известно, зависит от концентрации этого вещества в жидкой или газообразной фазе, находящейся около поверхности адсорбента. Поэтому содержание гигроскопической воды зависит от влажности воздуха, точнее —от давления водяных паров. При хранении какого-либо вещества состав его безводной части может не изменяться. Однако изменение содержания гигроскопической влаги отражается на содержании каждого из компонентов в единице веса вещества. Это имеет значение как при практическом применении вещества, так и при его анализе. Некоторые вещества в так называемом воздушно-сухом состоянии [c.109]

    Отсюда следует, что все полярные гидрофильные поверхности должны хорошо адсорбировать поверхностно-активные вещества из неполярных или слабополярных жидкостей и, напротив, неполярные гидрофильные поверхности хорошо адсорбируют поверхностноактивные вещества из полярных жидкостей. Именно на этом основано практическое применение полярных адсорбентов (силикагель, глины) для адсорбции поверхностно-активных веществ из неполярных сред и неполярных адсорбентов для адсорбции из полярных сред. При повышении температуры адсорбция из раствора умень- [c.270]

    В зависимости от пористости и распределения пор по их размерам свойства адсорбентов резко различаются. В связи с этим важное значение приобретает классификация адсорбентов по их структурным типам. Такая классификация может помочь предсказать адсорбционные свойства сорбентов по отношению к самым различным веществам иа основании измерения адсорбции лишь нескольких веществ и позволит судить об областях практического применения данного адсорбента. [c.112]


    С точки зрения молекулярной теории адсорбции наибольший интерес представляют взаимодействия молекул адсорбата с поверхностью адсорбента и адсорбированных молекул друг с другом. Эти взаимодействия ярче всего проявляются в случае мономолекулярной адсорбции. Большинство практических применений адсорбции также основано на адсорбции этого вида. Поэтому наибольшее число работ посвящено экспериментальному и теоретическому исследованию именно мономолекулярной адсорбции. Настоящая статья посвящена этой же проблеме. [c.12]

    Возможность применения фронтального способа для определения количественного состава, как уже говорилось, ограничивается из-за неполноты разделения. Правда, шведский ученый Классом, разработавший теорию способа, предложил ряд формул для расчета количественного состава сложной смеси однако практическое применение этих формул затрудняется необходимостью точного предварительного определения объемов удерживания и изотермы адсорбции отдельных компонентов. Необходимо также отметить, что этот способ может быть эффективен лишь в случае выпуклой формы изотермы адсорбции компонентов исследуемой смеси, так как лишь тогда получаются четкие крутые ступени на выходной кривой. Из этого следует, что для осуществления фронтального способа наиболее подходящими должны быть высокоактивные адсорбенты, например березовый уголь, силикагель. [c.16]

    Большое практическое значение имеет развитие теоретических представлений о физической адсорбции для реальных пористых адсорбентов и в особенности микропористых, наиболее распространенных в сорбционной технике. Вряд ли можно согласиться с утверждением во вводной части статьи Д. П. Пошкуса о том, что большинство практических применений адсорбции связано с мономолекулярной адсорбцией. [c.88]

    ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ АДСОРБЦИИ И АДСОРБЕНТОВ [c.32]

    Ознакомление с поверхностями твердых тел разной химической природы и геометрической структуры целесообразно начать с простейшего случая, а именно, с однородной поверхности одноатомного кристалла, причем такой, которая не содержит обрывов химических связей (они сейчас же будут насыщаться кислородом воздуха или другими химически активными примесями воздуха и создадут на поверхности центры специфической адсорбции). Идеальным примером такой поверхности является базисная грань полубесконечного кристалла графита. Эта поверхность в высокой степени инертна. Однако для практических применений в газовой хроматографии целесообразно иметь графитовый адсорбент с удельной поверхностью не менее 5—10 м /г. Для этого используются сажи, получаемые термическим разложением метана, выделяющийся при этом водород предохраняет углерод от окисления. Частицы образующейся термической сажи похожи на капли, а углеродные сетки кристаллитов в этих частицах невелики (около 2—3 нм). Хотя эти кристаллиты располагаются своими базисными гранями в основном перпендикулярно радиусу частицы такой сажи неоднородность ее поверхности еще очень велика, так как [c.14]

    Следует отметить, что для описания адсорбции на твердых адсорбентах справедливо также фундаментальное уравнение Гиббса (3.1), однако практическое применение этого уравнения затруднено из-за невозможности непосредственного измерения поверхностного натяжения на границе твердое тело-газ . [c.44]

    Рассмотрены высокоэффективные адсорбенты — синтетические цеолиты, имеющие широкое практическое применение. Излагаются представления о механизме кристаллизации цеолитов. Описаны зависимость адсорбционных свойств от особенностей структуры, возможности регулирования структуры и химического состава цеолитов, основные методы структурно-химического модифицирования кристаллов. Обобщены данные по адсорбции газов и паров цеолитами. [c.2]

    ЗНАЧЕНИЕ АДСОРБЕНТОВ С БЛИЗКОЙ К ОДНОРОДНОЙ ПОВЕРХНОСТЬЮ ДЛЯ РАЗВИТИЯ МОЛЕКУЛЯРНОЙ ТЕОРИИ АДСОРБЦИИ И ПРАКТИЧЕСКИХ ПРИМЕНЕНИЙ [c.13]

    Стало почти тривиальным утверждение, что в громадном большинстве случаев практические применения сорбционной техники связаны с использованием так называемых микропористых адсорбентов, таких как активные угли, тонкопористые гели (силикагели, алюмогели и др.), цеолиты. Вместе с тем при построении теорий адсорбции, как правило, исходят из представлений о моделях, которые не могут быть согласованы с нашими взглядами на пористую структуру микропористых сорбентов. [c.231]

    Даже самые лучшие адсорбенты обладают небольшой адсорбционной емкостью по отношению к микроорганизмам. Более того, десорбция — освобождение микробных клеток и регенерация адсорбента — затруднительна и связана с необходимостью обработки его растворами кислот, солей, щелочей, ПАВ или других органических соединений [103, 105, 335]. Следует отметить, что практического применения при отделении микроорганизмов от воды адсорбция, ио-видимому, ие нашла главным образом из-за малой поглотительной емкости и сложности регенерации адсорбентов [103, 194, 215, 512]. [c.192]


    Особенности сорбции в микропорах (227). 2. Теория объемного заполнения микропор (231). 3. Практическое применение теории объемного заполнения к адсорбции микропористыми адсорбентами (235). 4. Определение удельной поверхности микропористых адсорбентов (239). 5. Метод Бонда и Спенсера (240). [c.248]

    Вся вышеуказанная градация степени адсорбции различных групп углеводородов, составлена на основе рассмотрения этого факта с точки зрения примерной равнозначности молекулярных весов и молекулярных концентраций адсорбируемых соединений в условиях применения одного и того же адсорбента. В практических условиях эта общая линия нарушается за счет двух особенностей. Первой из них является избират-ельная адсорбция адсорбентов [c.79]

    Обсуждение смешанной адсорбции может быть подразделено на три части. Во-первых, можно иметь дело с одн 1м адсорбентом и смесью газов. Это представляет особенно важный тип смешанно физической адсорбции. Во-вторых, можно иметь дело только с одним адсорбируемым веществом и смесью адсорбентов. В этой области до сего времени было сделано очень мало работ. Наконец, можно иметь дело со смешанным адсорбентом и смесью адсорбируемых веществ. Этот случай никоим образом не является необычным в практическом применении адсорбционных процессов в действительности многие каталитические реакции [c.640]

    Цеолиты синтетические (молекулярные сита) — алюмосили-катные микропористые адсорбенты, обладающие не только высокой избирательной адсорбцией, но и способностью разделять вещества, с разными размерами и формой молекул адсорбтива. Они отличаются строго кристаллическим строением и большой удельной поверхностью. Поры цеолита представляют сферические полости, соединенные каналами. В настоящее время промышленные предприятия выпускают цеолиты разных марок, отличающихся катионами и размером пор. Наибольшее практическое применение получили цеолиты типа А и X, имеющие двухзначные обозначения КА, МаА, СаА, ЫаХ, СаХ первая часть обозначения — преобладающий в нем металл (К, N3, Са), вторая — тип решетки (А или X). Эта классификация цеолитов указывает определяющий размер диаметра входного окна  [c.122]

    Получение из эксперимептальпых данных по адсорбционному равновесию термодинамических характеристик адсорбции для ряда молекул близкого и разного состава и строения необходимо как для практических применений, так и для развития молекулярной теории адсорбции и межмолекулярных взаимодействий вообще. Во-первых, термодинамические характеристики являются опорными для определения соответствующих величин для экспериментально не изученных веществ, что, в частности, помогает идентифицировать неизвестные вещества в адсорбционной хроматографии. Во-вторых, эти данные нужны для определения атом-атомных потенциальных функций межмолекулярного взаимодействия и теоретического расчета термодинамических характеристик адсорбции на основании структуры молекулы адсорбата и строения адсорбента (см. гл. X). Наконец, в-третьих, эти данные нужны для решения обратных задач, т. е. при известных атом-атомных потенциальных функциях межмолекулярного взаимодействия экспериментальные термодинамические характеристики адсорбции позволяют сделать заключение о структуре молекулы адсорбата (подробнее об этом см., например, разд. 4 гл. X). В этой главе рассмотрены полученные из экспериментальных данных термодинамические характеристики адсорбции на графитированной термической саже при малом (нулевом) заполнении поверхности. Основная литература по экспериментальному исследованию адсорбции на графитированных термических сажах была указана в разд. 1 гл. П. Поэтому здесь даются ссылки лишь на те работы, в которых были получены, наиболее точные данные, использованные для определения термодинамических характеристик адсорбции при нулевом заполнении поверхности. [c.180]

    Цеолиты представляют очень важные объекты для развития теоретических представлений о взаимодействии и практических применений в адсорбции и катализе. Они представляют собой также очень благоприятные объекты и для спектральных исследований. Основная задача при комплексном исследовании цеолитов как адсорбентов и катализаторов состоит в получении спектральных характеристик адсорбционного взаимодействия на образцах с известной кристаллической структурой, известным числом и по возможности известными местами фиксации обменных катионов и катионных вакансий при известных величинах заполнения каналов адсорбирующимися молекулами. [c.437]

    Углеводородные газы — метан и ацетилен — адсорбируются значительно слабее, чем аммиак, хлористый этил или сероводород, но лучше, чем такие газы, как азот и водород. В ряду парафиновых предельных углеводородов (метан, этан, пропан, бутан, и т.д.) адсорбция увеличивается с увеличением молекулярного веса адсорбента. Пары жидких углеводородов — иентана, гексана, бензола и др. — настолько хорошо поглощаются углем, что на этом явлении основано практическое применение угля как адсорбента для извлечения жидких углеводородов из природных и промышленных газов, а также пз воздуха. Поскольку адсорбция различных газов на каком-либо адсорбенте неодинакова, то это свойство может быть использовано для разделения газовых смесей на отдельные комноненты. [c.22]

    Для практического применения адсорбционного процесса способность адсорбента поглощать определенный адсорбтив, так называемая адсорбционная способность, имеет решающее значение. Поэтому экспериментально определяется равновесная адсорбционная емкость при постоянной температуре как функция равновесной концентрации и соответственно парциального давления. Графическое изображение этой зависимости называется изотермой адсорбции. Для отдельных случаев представляет интерес также изобара адсорбции, т. е. температурная зависимость адсорбции при постоянном парциальном давлении (концентрации).  [c.26]

    Уравнение изотермы Фрейндлиха получено вначале эмпирически. Однако его можно вывести и теоретически. Широкое практическое применение оно находит преимущественно для описания адсорбции из разбавленных водных растворов. В этом случае в уравнении (3.12) объем адсорбированного газа заменяется на адсорбированное количество вещества X, отнесенное к навеске адсорбента М. Вместо парциального давления р используется равновесная концентрация С  [c.28]

    Еще в XV веке было известно, что древесный уголь способен извлекать красящие частицы из окрашенных растворов. Первые теоретические и практические работы по адсорбции были опубликованы в Петербурге русским химиком Ловицом в 1785 году. Ему же принадлежит первое практическое применение твердых адсорбентов, углей, для очистки растворов от примесей, при получении чистых кристаллов виннокаменной кислоты. [c.44]

    Практическое применение адсорбции. Адсорбция находит разностороннее применение. Мы уже упоминали о том, что при гетерогенном катализе как в газовой среде, так и в растворах процесс адсорбции реагирующих веществ твердым катализатором обычно играет решающую роль. Широко применяются твердые адсорбенты также и в различных процессах очистки газов или растворов от нежелательных примесей или загрязнений. Сюда относится, в частности, применение активированного угля для противогазов, введенное благодаря работам Н. Д. Зелинского, спасшего этим много тысяч человеческих жмзней. [c.357]

    В курсе приведены многочисленные примеры практического применения главным образом газовой и молекулярной жидкостной хроматографии на адсорбци-онно или химически модифицированных адсорбентах для анализа углеводородов, их производных и гетероциклических соединений. Особое внимание уделено анализу вредных примесей, разделению углеводов, стероидов, гликозидов, азолов, азинов, а также таких важных галогенпроизводных, как фреоны и пестициды. Адсорбция микотоксинов, представляющих собой одну из серьезнейших пищевых и кормовых проблем, рассматривается как в аспекте хроматографического их анализа, так и в аспекте хроматоскопического исслв1Дования структуры их молекул. В конце курса приведены примеры адсорбции и хроматографии синтетических и природных макромолекул. Здесь рассматривается иммобилизация некоторых ферментов и клеток (например, для осахарнвания крахмала, изомеризации глюкозы, для решения проблем искусственной почки), а также вопросы хроматографической очистки вирусов, в частности, вирусов гриппа и ящура. [c.4]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    Приближенная теория межмолекулярных сил дает правила комбинирования для входящих в потенциалы взаимодействия параметров сил притяжения и сил отталкивания [1, 45—51]. С помощью этих правил комбинирования параметры потенциала взаимодействия разных силовых центров могут быть оценены из параметров потенциалов взаимодействия одинаковых силовых центров. Поэтому параметры потенциальной функции Ф могут быть оценены с помощью таких правил комбинирования независимо от экспериментальных адсорбционных данных при использовании параметров потенциальных функций межмолекулярного взаимодействия силовых центров адсорбата и силовых центров адсорбента, взятых в отдельности [52]. Этим путем были получены потенциалы Ф взаимодействия некоторых одноатомных и квазиодноатомных молекул с решетками графита [45, 52—58], нитрида бора [59] и инертных газов [60—65]. Однако правила комбинирования дают только приближенные значения этих параметров [45]. Кроме того, для применения этого способа сначала надо определить параметры потенциалов межмолекулярного взаимодействия силовых центров адсорбата между собой и потенциалов межмолекулярного взаимодействия силовых центров адсорбента между собой, что само по себе часто затруднительно. Поэтому практическое применение этого способа, в общем, встречает значительные трудности, а точность определенных этим способом параметров недостаточна для использования найденной таким способом функции Ф для статистических расчетов термодинамических характеристик адсорбции. [c.245]

    Нет никакой необходимости останавливаться на важнейшей роли уравнений (3) и (4) в решении множества научных и практических задач, связанных с применением микропористых адсорбентов. Этот вопрос был многократно рассмотрен в литературе. Кроме непосредственного использования, уравнение (4) применялось также для расчета адсорбции бинар- [c.385]

    В соответствии с основными соотношениями, рассмотренными в гл. I, константа Генри пропорциональна удерживаемому объему. Исходя из этого, можно сделать два вывода, важных для практического применения газоадсорбционной хроматографии а) логарифм удерживаемого объема пропорционален энергии взаимодействия и обратно пропорционален абсолютной температуре б) так как необходимы.м условием газохроматографического разделения является быстрое и обратимое установление фазового равновесия, то обычно газохроматографический процесс базируется только на физической адсорбции (а не хемосорбции), при которой адсорбированные молекулы сохраняют свои индивидуальные свойства. При хемосорбции вследствие значительной энергии взаимодействия с адсорбентом, которую можно сравнить по порядку величин с теплотой химической реакции, десорбция молекул сильно замедлена. [c.297]

    Развитию хроматографического метода способствовали крупные успехи русских и советских ученых по теории адсорбции и практическому применению адсорбционных явлений. Большое значение имели работы Н. А. Шилова, М. М. Дубинина, К. В. Чмутова, Б. П. Никольского, М. Л. Чепелевецкого, А. В. Киселева и других исследователей, посвященные механизму взаимодействия адсорбируемого вещества и адсорбента как в газовой фазе, так и в растворах. Значительную роль сыграли исследования М. М. Дубинина и А. В. Киселева с сотрудниками по изучению структуры активных углей и силикагелей и установлению связи ее с адсорбируемостью различных веществ. С 1926 г. М. М. Дубинин занимался исследованием адсорбции веществ из различных разбавленных растворов и впервые начал изучать хроматографическую адсорбцию паров. Он разработал теорию молекулярной хроматографии парообразных веществ. [c.7]


Смотреть страницы где упоминается термин Практическое применение адсорбции и адсорбентов: [c.141]    [c.141]    [c.8]    [c.450]    [c.253]    [c.450]    [c.9]    [c.59]    [c.262]   
Смотреть главы в:

Адсорбенты и их свойства -> Практическое применение адсорбции и адсорбентов




ПОИСК





Смотрите так же термины и статьи:

Адсорбция применение

Практическое применение пен



© 2024 chem21.info Реклама на сайте