Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория молекулярной хроматографии

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]


    Заметим, что в отличив от уравнений, рассматриваемых в теории молекулярной хроматографии [сравни с (18)1, в преобразованные системы уравнений (58)—(59) и (60)—(61) входит только одна хроматографическая постоянная, совпадающая с величиной распределительного отношения, в данном случае, по терминологии Е. Н. Гапона и Т. Б. Гапон, величиной ионного отношения. Это, конечно, значительно упрощает задачу. [c.27]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    ТЕОРИЯ МОЛЕКУЛЯРНОЙ ХРОМАТОГРАФИИ [c.52]

    СКОС определение аспарагиновой кислоты в белках. И. И. Жуков и А. В. Маркович глубоко разработали теорию электродиализа и б связи с этим успешно применили метод электродиализа для разделения белков. Чрезвычайно много сделали советские ученые в разработке хроматографического анализа, открытого знаменитым русским ученым М. С. Цветом (1903 г.) и получившего за последние годы исключительно важное значение для разделения смесей аминокислот, углеводов, органических кислот, пигментов и многих других веществ в частности, необходимо отметить разработку теории молекулярной хроматографии М. М. Дубининым, ионообменной хроматографической адсорбции Е. Н. Гапоном, распределительной хроматографии Н. А. Фуксом и др. [c.10]

    Когда говорят о теории хроматографии, то обычно имеют в виду решение дифференциальных уравнений материального баланса и соответствующие выводы относительно возможности и полноты разделения, если известно, что один компонент адсорбируется сильнее другого. Поэтому особенно важным является вопрос о том, почему один компонент смеси адсорбируется сильнее другого и что нужно сделать в отношении улучшения свойств адсорбентов и методов работы, чтобы максимально увеличить эффективность хроматографического разделения. Поскольку в основе молекулярной хроматографии лежит процесс адсорбции, необходимо исследовать адсорбционные свойства углеводородов и их спутников, присутствующих в нефтепродуктах. Такое исследование встречает большие затруднения. В лучших справочниках физико-химических констант нет главы, содержащей данные по адсорбции, несмотря на тысячи работ в этой области, которые опубликованы почти за 200-летнее существование этой области науки. [c.36]


    Первые попытки создания теории молекулярной хроматографии были предприняты Цветом Дальнейшие исследования в этой области позволили разработать количественную теорию молекулярной хроматографии [юв-ио] [c.466]

    Жидкостно-адсорбционная молекулярная хроматография в ее приближающемся к равновесному варианте основана на различии в константах равновесия системы раствор — адсорбент для разных компонентов раствора. Даже при полном разделении компонентов смеси при прохождении данного компонента через слой адсорбента в колонне раствор содержит по крайней мере два вещества компонент анализируемой смеси и растворитель. Таким образом, теория равновесной жидкостно-адсорбционной хроматографии должна основываться на теории адсорбции из бинарных [1 —16] и более сложных [1, 4, 17, 18] жидких растворов. Эта теория разработана еще недостаточно и носит чисто термодинамический характер. Поэтому коэффициенты активности компонентов раствора в адсорбированном состоянии и константы равновесия определяются из самих экспериментальных изотерм адсорбции. Константы равновесия при упрощенных представлениях о структуре адсорбционного слоя могут быть определены через разности работ смачивания чистыми жидкими компонентами, которые, в свою очередь, могут быть найдены из разности работ насыщения адсорбента парами чистых жидких компонентов и их поверхностных натяжений. Однако все это ограничивает возможности расчета и делает его неточным. [c.205]

    Теория динамики неравновесной молекулярной сорбции газов и паров дана в работах А. А, Жуховицкого [22]. В последние годы наибольшее число теоретических исследований посвящено разработке теории ионообменной хроматографии [3, 4—7, 10, 22, 28—33, 34—39]. Представляет большой интерес совмещение хроматографического метода на ионитах с электрофорезом [23]. [c.147]

    Между ионообменной хроматографией и адсорбционной молекулярной имеется существенное различие. Если молекулярная адсорбционная хроматография основана на явлении адсорбции, подчиняющейся в первом приближении теории Лэнгмюра, то ионообменная основана на стехиометрическом обмене ионов раствора с ионами ионита. В соответствии с этим вымывание адсорбированных веществ в молекулярной хроматографии может производиться чистым растворителем, тогда как в ионообменной в качестве вымывающего вещества необходимо применять растворы электролитов. [c.61]

    Создание адсорбентов с поверхностью, близкой к однородной, не только имело практическое значение для молекулярной хроматографии, но и стимулировало развитие молекулярной теории адсорбции и дало ей необходимое экспериментальное основание. Разработке одного из важнейших направлений этой теории — молекуляр-но-статистической теории адсорбции — долгое время мешал разрыв [c.10]

    Помимо эксклюзии и диффузии, существует еще один принцип, исходя из которого можно разработать теорию гель-хроматографии, — принцип распределительной хроматографии. При этом весь гель (а не только содержащийся в нем растворитель) рассматривают как стационарную фазу. Бренстед [38] исследовал влияние размеров молекул на распределение в различных равновесных фазах и обнаружил, что значение X в уравнении Больцмана пропорционально молекулярному весу  [c.123]

    Поэтому приходится выбирать трудоемкий путь приближенного расчета, один из вариантов которого был разработан Е. Н. Гапоном и Т. Б. Гапон (1948). Благодаря применению этого метода в разработке теории ионообменной хроматографии удалось достигнуть более существенных результатов, чем в молекулярной хроматографии. [c.71]

    Простейшим адсорбентом для разделения гомологов, структурных изомеров и вообще молекул, различающихся по их геометрии, а также для разработки количественной молекулярно-статистической теории адсорбционной хроматографии является одноатомный кристаллический адсорбент с однородной плоской поверхностью. [c.17]

    В работе Т. Б. Гапон, Е. Н. Гапона и Ф. М. Шемякина хроматографическое разделение ионов было впервые связано с обменом ионов, и ряд ионов был разделен на колонке из пермутита. Ионный обмен резко отличается по своему механизму от молекулярной адсорбции, что вызвало необходимость разработки специальной теории ионообменной хроматографии. [c.45]

    М. М. Дубинин (1932—1936 гг.) в результате всесторонних экспериментальных исследований развил на основе идей П. А. Шилова методы расчета динамической активности. Эти работы имели важное значение для развития рекуперационной техники. М. М. Дубинин разработал общую теорию динамики сорбции смеси парообразных веществ. Он ввел понятие о коэффициенте вытеснения и дал основное уравнение для определения времени динамической работы слоя угля по обоим компонентам смеси. Данные М. М. Дубинина и М. В. Хреновой по разделению спирта и толуола на шихте угля подтвердили выведенное ими уравнение. Эти исследования можно считать началом работ по молекулярной хроматографии смесей парообразных веществ. [c.261]


    В монографии излагается современная молекулярная теория адсорбционной хроматографии рассматривается влияние химической природы и геометрической структуры адсорбентов и других факторов на селективность и эффективность хроматографического разделения, а также пути регулирования эффективности и селективности адсорбента и оптимизации разделительной способности адсорбционных разделительных колонн. Описывается применение адсорбционной хроматографии для исследования свойств поверхностей твердых тел подробно излагаются новые аналитические применения приводится большой справочный материал. [c.4]

    Экспериментальные данные, полученные при работе с достаточно я адсорбентами с хорошо известным химическим составом и геометрической структурой поверхности, т. е. воспроизводимые с достаточной точностью, служат основой для развития количественной молекулярно-статистической теории адсорбции и адсорбционной хроматографии сложных молекул. В свою очередь эта теория с помощью современной вычислительной техники должна помочь оптимальному выбору адсорбентов для конкретных практических задач молекулярной хроматографии, а также расчетам адсорбционных равновесий и удерживаемых объемов на основе свойств поверхности и адсорбируемой молекулы. [c.6]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Рассмотренные примеры показывают высокую чувствительность определяемых с помощью газовой хроматографии термодинамических характеристик адсорбции (величин К и 51) к структуре молекул. Макроскопические (термодинамические) характеристики системы адсорбат — адсорбент связывают с ее микроскопическими характеристиками (со структурой адсорбента и молекул адсорбата) молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий, которые рассмотрены во второй части курса. Зная структуру молекул адсорбата и структуру адсорбента, можно решить прямую молекулярно-статистическую задачу — рассчитать константу Генри для равновесия адсорбат — адсорбент и предсказать последовательность выхода разных адсорбатов из хроматографической колонны с адсорбентом. [c.25]

    Развитие количественной молекулярно-статистической теории селективности жидкостной хроматографии в различных полуэмпирических приближениях облегчается при использовании такого рода корреляционных зависимостей между определенными из хроматограмм константами Генри для адсорбции из растворо в и параметрами структуры молекул компонентов для данного адсорбента и данного элюента, а затем и при изменении химии поверхности адсорбента и состава элюента. [c.283]

    Установление вкладов, вносимых в термодинамические характеристики удерживания отдельными звеньями и функциональными группами молекул (а также макромолекул олигомеров, см. лекцию 18) весьма важно, поскольку накопление и уточнение значений этих вкладов, как уже отмечалось, необходимо, чтобы составить экспериментальную основу развития полуэмпирической молекулярной теории удерживания в жидкостной хроматографии. [c.313]

    Обобщение всего основного материала современной аналитической химии проведено в книге на базе теории информации, метрологии и в свете практических задач химического анализа. Это, несомненно, здоровая основа для обобщения, однако в ней не хватает, как нам кажется, одного важного элемента — учета специфических структурных уровней организации и движения материи, используемых в анализе (молекулярные орбитали, внешние и внутренние атомные орбитали, ядро атома). Поэтому несколько искусственный и формальный характер имеет объединение в одной главе пяти разделов, посвященных, с одной стороны, атомно-молекулярной спектроскопии и, с другой стороны, ЯМР- и масс-спектроскопии. Такой же характер имеют отчасти и разделы по хроматографии, включенные в гл. 7, посвященную методам разделений. [c.6]

    Несмотря на то, что в основе этих методов лежит различный механизм взаимодействия молекул веществ с сорбентом, все эти виды хроматографии подчиняются одним закономерностям. Поэтому целесообразно вначале рассмотреть главные закономерности теории хроматографического разделения веществ и основные факторы, влияющие на разделение, а затем рассматривать отдельные методы хроматографического анализа веществ молекулярного характера, для удобства объединив их по технике выполнения. [c.13]

    Для разных по геометрической или электронной структуре молекул значения констант Генри обязательно различаются (при определенной температуре), так как они связаны с энергией молекулярного взаимодействия, разной для разных молекул. Поэтому теория линейной идеальной хроматографии приводит к выводу об обязательном хроматографическом разделении любых компонентов. [c.23]

    Развитию хроматографического метода способствовали крупные успехи русских и советских ученых по теории адсорбции и практическому применению адсорбционных явлений. Большое значение имели работы Н. А. Шилова, М. М. Дубинина, К. В. Чмутова, Б. П. Никольского, М. Л. Чепелевецкого, А. В. Киселева и других исследователей, посвященные механизму взаимодействия адсорбируемого вещества и адсорбента как в газовой фазе, так и в растворах. Значительную роль сыграли исследования М. М. Дубинина и А. В. Киселева с сотрудниками по изучению структуры активных углей и силикагелей и установлению связи ее с адсорбируемостью различных веществ. С 1926 г. М. М. Дубинин занимался исследованием адсорбции веществ из различных разбавленных растворов и впервые начал изучать хроматографическую адсорбцию паров. Он разработал теорию молекулярной хроматографии парообразных веществ. [c.7]

    Следующий шаг в теории молекулярной хроматографии был сделан М. М. Дубининым (1936), изучившим впервые процесс образования молекулярных хроматограмм газов и паров. Он показал, что при прохождении смеси паров через слой адсорбента в нем, благодаря различиям в адсорбируемости паров, возникают отдельные зоны с преимущественным содержанием одного из наров. Этот факт позволил разработать методику дробного фракционирования смеси газов и паров при помощи адсорбционной колонки. [c.59]

    Как уже отмечалось, распределительная хроматография имеет очень большое сходство с молекулярной хроматографией. При образовании как молекулярных, так и распределительных хроматограмм действуют силы одинаковой природы — ван-дер-ваальсовы силы межмолекулярного взаимодействия. Теорию молекулярной хроматографии, как показал Н. А. Фукс (1948), можно применить для объяснения процессов раснределительной хроматографии. [c.77]

    Начиная с 1926 г., М. М. Дубинин исследовал адсорбцию веществ из различных разбавленных растворов и впервые изучал хроматографическую адсорбцию паров, дав теорию молекулярной хроматографии парообразных веществ. Е. Н. Гапон (1933 г.) и Б. П. Никольский (1934 г.) сформулировали законы ионного обмена в почвах . В работе Т. Б. Гапон, Е. Н. Гапона и Ф. М. Шемякина впервые хроматографическое разделение ионов было связано с обменом ионов и рассмотрено разделение ряда ионов на колонке из пермутита. Е. Н. Гапоном создана теория ионообменной хроматографии. Ф. М. Шемякин и Э. С. Мицелов-СКИЙ1 впервые применили к изучению хроматографии метод физико-химического анализа акад. Н. С. Курнакова. [c.13]

    Большинство природных и синтетических веществ нельзя перевести в газовую фазу, поэтому область применения жидкостной хроматографии значительно шире, чем газовой. В последние годы аналитическая жидкостная хроматография в различных ее вариантах (колоночная, тонкослойная) развивается очень быстро. Однака молекулярная теория жидкостной хроматографии, как и молекулярная теория адсорбции из растворов (см. лекции 14 и 15), еще не разработана. Причиной этого является сложность системы и необходимость учета межм олекулярного взаимодействия молекул всех компонентов раствора не только с адсорбентом, но и друг с другом, причем находящихся как в адсорбированном состоянии, так и в растворе. Поэтому развитие молекулярной теории жидкостной хроматографии зависит от состояния и развития молекулярной теории жидкостей и разбавленных растворов. Поэтому, как и в лекциях 14 и 15 по адсорбции из растворов, мы ограничимся здесь лишъ качественным рассмотрением этих вопросов. [c.282]

    Более специфические виды межмолекулярного взаимодействия, такие, как водородная связь, образование комплексов с переносом заряда и другие [5], в газовой хроматографии обычно слабо проявляются из-за высокой температуры колонки. Жидкостная молекулярная хроматография позволяет определить константу Генри для весьма сложных молекул [64]. Поэтому большой интерес представляет разработка хроматоструктурного метода с использованием данных жидкостной хроматографии. Разработка такого метода встречает ряд трудностей. Во-первых, еще в достаточной мере не развита молекулярно-статистическая теория адсорбции из бесконечно разбавленных растворов. Во-вторых, получаемые методом жидкостной хроматографии значения константы Генри недостаточно точны. Однако методом жидкостной хроматографии уже сейчас могут быть найдены довольно простые количественные закономерности изменения термодинамических характеристик при адсорбции из растворов с изменением структуры молекул [65]. Получение и уточнение таких эмпирических закономерностей должны помочь разработать на молекулярном уровне полуэмпирические расчеты константы Генри для жидкостной хроматографии сложных молекул и решить обратную хроматоскопическую задачу — найти параметры структуры молекул из экспериментальных определений константы Генри с помощью жидкостной хроматографии. Важную роль здесь должен сыграть направленный синтез поверхностных соединений определенной структуры. [c.210]

    Как уже отмечалось в главе I, основные понятия и теоретические положения, лежащие в основе хроматографического метода, были сформулированы его основателем М. С. Цветом. В своих трудах он дал качественное теоретическое объяснение основных приемов получения хроматограмм. Несмотря на то, что Цвет разрабатывал главным образом вопросы теории молекулярной адсорбционной хроматографии, некоторые из установленных им теоретических положений имеют общее значение и для других видов хроматографии. Так, например, открытый Цветом закон адсорбционного замещения относится в равной мере и к молекулярной и к ионообменной хроматографии. Цвет сформулировал также условие, необходимое для осуществления хроматографического процесса. В своей монографии Хромофиллы в растительном и животном мире он писал Для того, чтобы два находящихся в растворе вещества могли быть разъединены по адсорбционным методам, необходимо, чтобы они занимали неодинаковый ранг в адсорбционном ряду (1910в, стр. 85). [c.47]

    Отделение физической химии Заведующий D. Н. Everett Направление научных исследований термодинамика растворов система водород — палладий явления гистерезиса газовая хроматография масс-спектроскопия электронный парамагнитный резонанс углерода активированные водородом энзимы адсорбция и диффузия полимеров на поверхности раздела металл — раствор адсорбция поверхностно-активных веществ на заряженной поверхности раздела твердое тело — жидкость сорбция газов твердыми веществами хемосорбция на металлах и окислах гетерогенный и гомогенный катализ оптические и магнитные свойства ионов переходных металлов в окислах химия твердого тела электрохимия калориметрия в потоке оптические свойства макромолекулярных и коллоидных систем техника сверхвысокого вакуума теория молекулярных орбит и замещения в системе я-электронов. [c.254]

    Химическое отделение Заведующий R. N. Haszeldine Направление научных исследований теория молекулярного строения применение рентгеновской дифракции для изучения молекулярного строения катализ и ингибирование реакций в газовой фазе электронный парамагнитный резонанс свободных радикалов в газовой фазе ЯМР высокого разрешения применение электронно-вычислительных машин для физико-химического анализа газожидкостная хроматография применение галогенов в аналитической химии гидриды металлов сильные неорганические кислоты химия фтора, висмута, фосфора, ванадия методы спектроскопического определения фтора в органических и металлорганических соединениях окисные катализаторы жидкофазное окисление углеводородов органические соединения азота использование полифосфорной кислоты в органическом синтезе кремний-, фосфор- и сераорганические соединения эмульсионные полимеры фторсодержащие полимеры фенол-форм альдегидные смолы силиконы, силоксаны, полисилоксаны масс-спектроскопическое изучение полимеров деструкция полимеров. [c.264]

    Теоретические вопросы динамики ионного обмена разрабатывались советскими учеными на основе представлений о статике и кинетике процесса молекулярной хроматографии, развитых с учетом специфики ионообменных реакций. При этом ставилась задача создания упрощенных методов расчета ионообменных колонн и фильтров. Следует, однако, отметить, что наличие большого числа физико-химических факторов, управляющих процессом, — пабз хание сорбента, специфичность адсорбции ионов и в особенности ионов многовалентных металлов, температура проведения опыта и гидродинамика течения, — еще не позволяет в настоящее время предложить универсальный метод расчета колонн и фильтров, хотя в этом направлении достигнуты известные успехи. В сборник включены работы, отображающие современное состояние теории ионного обмена и ионообменной хроматографии, а также работы, посвященные изучению закономерностей при обмене ионов на ионитах отечественного производства (Е. А. Матерова, В. И. Парамонова, В. А. Клячко, К. В. Чмутов, Т. Б. Гапоп, А. Т. Давыдов, Б. В. Рачинский и др.). [c.3]

    В (111.37) и (111.38) содержится целый ряд важных величин для теории и практики газовой хроматографии. В (111.38) А характеризует размывание хроматографической полосы за счет вихревой диффузии, В — размывание за счет молекулярной диффузии в газовой фазе, С — размывание за счет замедленной диффузии хроматографируемого вещества в жидкую фазу (за счет замедленной кинетики внутренней массопередачи). [c.69]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]


Библиография для Теория молекулярной хроматографии: [c.379]   
Смотреть страницы где упоминается термин Теория молекулярной хроматографии: [c.6]    [c.135]    [c.135]    [c.2]    [c.281]   
Смотреть главы в:

Хроматография в биологии -> Теория молекулярной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Хроматография молекулярная



© 2025 chem21.info Реклама на сайте