Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Р а б о т а 3. Определение температуры плавления и температуры кипения веществ

    Методы определения температуры плавления, температуры кипения, плотности, показателя преломления и удельного вращения можно найти во всех практикумах по органической химии, и поэтому выше приведены лишь некоторые приемы определения констант, рекомендуемые при работе с малыми количествами вещества. [c.49]


    При ультрамикрохимических исследованиях, наряду с проведением аналитических операций, иногда возникает необходимость определения физических констант, пользуясь очень малыми количествами вещества. Так, например, в связи с исследованием химических свойств трансурановых элементов были синтезированы новые соединения в количествах, не превышающих нескольких микрограммов . В процессе исследования этих соединений возникла необходимость определения целого ряда их физических констант. Эти работы лишний раз показывают, какую большую роль могут сыграть хорошо известные методы для решения новых проблем. При анализе очень малых количеств биологических веществ часто также возникает необходимость определять их физические свойства. Такие операции, как, например, определение температуры плавления, температуры кипения, показателя преломления и плотности веществ, количество которых не превышает нескольких миллиграммов, уже в течение многих лет проводятся в лабораторной практике. Для того чтобы с помощью эт ях методов можно было работать с количествами вещества порядка нескольких микрограммов, иногда можно просто уменьшить применяемую аппаратуру. Некоторые методы определения физических констант веществ, количество которых не превышает нескольких микрограммов, также хорошо разработаны и используются в практической работе. [c.319]

    Значение определения оптической активности. Каждое оптически активное веще тво при исследовании в определенных условиях вращает плоскость поляризации на определенный угол, величина которого является постоянной и характерной для данного вещества, т. е. такой же константой, как температура плавления, температура кипения вещества и удельный вес. Константа, характеризующая оптическую активность вещества, называется удельным вращением (об определении удельного вращения см. ниже). [c.219]

    Каждое органическое вещество характеризуется определенными температурами плавления и кипения, плотностью, показателем преломления и т. д. Эти величины называются физическими константами. С их помощью можно определить (идентифицировать) вещество, а также установить его чистоту. Для этого определяют некоторые физические константы вещества и сравнивают их с литературными данными. [c.39]

    Нагревание. Нагревание используют для ускорения большинства органических реакций, при выделении и очистке веществ (перегонка, возгонка, растворение, плавление, сушка), при определении физических констант веществ (температура плавления, температура кипения и т. д.). Большинство органических реакций протекает сравнительно медленно. Чтобы иметь максимальный выход, увеличивают продолжительность или повышают температуру реакции. С повышением температуры на 10° С скорость реакции увеличивается примерно в 2,5 раза. В настоящее время обычно используют шкалу Цельсия (°С). [c.14]


    Ряд зарубежных фирм начали в последние годы выпуск полностью автоматических приборов для определения температуры плавления и кипения органических соединений. В капилляр помещают 2—3 мг вещества и фотоэлемент фиксирует образование прозрачного плава, при этом специальный счетчик фиксирует температуру плавления с точностью до 0,1°. Приборы очень удобны, хотя определение температуры плавления окрашенных веществ в них затруднено. [c.80]

    После предварительной пробы крупинки вещества на разложение (взрывчатость, выделение удушливых газов ), определение температуры плавления (для твердых веществ до 150°С) или температуры кипения (для жидкостей до 2(Ю°С). [c.161]

    Определение строения высокомолекулярных веществ и описание их свойств долгое время затруднялись невозможностью выделения их методами классической органической химии в химически чистом состоянии и нахождении их точных физических констант (температуры плавления, температуры кипения, молекулярной массы). На основе же данных элементного анализа можно было определить лишь состав вещества, но не его строение. Изучение строения и свойств высокомолекулярных соединений стало возможным только с развитием физической химии и появлением таких методов исследования, как рентгенография, электронография и другие физические методы. Были созданы также специальные методы определения молекулярной массы, формы и строения гигантских молекул, неизвестных в классической химии. [c.49]

    Химия — наука о веществе, его составе и свойствах. Различают химические и физические свойства. Под химическими свойствами разумеют способность вещества вступать во взаимодействие с другими веществами. Каждое вещество обладает характерными для него физическими свойствами цветом, вкусом, запахом, плотностью, температурами плавления и кипения, вязкостью и др. Большинство физических свойств могут быть выражены определенными числовыми данными, или константами. Однако константы данного вещества могут изменяться, если в нем присутствуют примеси других веществ. Следует помнить, что абсолютно чистых веществ (степень чистоты 100%) практически не существует. Однако в настоящее время получают вещества с ничтожным содержанием примесей (до 10 %). [c.10]

    Нагревание используют для ускорения большинства органических реакций, при выделении и очистке веществ (перегонка, возгонка, растворение, плавление, сушка), при определении физических констант веществ (температура плавления, температура кипения и т. д.). [c.97]

    Сульфокислоты являются трудно характеризуемыми веществами, так как большинство из них не имеет определенных температур плавления и кипения. Кроме того, при выделении свободных сульфокислот трудно освободиться от неорганических примесей В связи с этим сульфокислоты выделяются обычно в виде солей, которые могут быть очищены кристаллизацией, и многие из них имеют характерные температуры плавления. [c.233]

    Температуры плавления н кипения. Температуры плавления и кипения дань для давления 760 мм рт. ст. значения температур кипения, определенных пр] других давлениях, снабжены показателем, указывающим величину давления Например, 82>5 означает, что вещество имеет температуру кипения 82° С при да влении 15 лш рт. ст. [c.397]

    В книге сохранено описание большинства процедур предварительной характеристики вещества, опубликованных в предыдущих изданиях (определение температур плавления и кипения, выяснение характера растворимости и т. п.). Однако при обсуждении этих операций описаны также соответствующие наиболее современные приемы (например, проверка чистоты веществ с помощью тонкослойной хроматографии и др.). Раздел о качественном элементном анализе (путем сплавления с натрием) дополнен описанием использования масс-спектрометрии и других новейших методов одновременно для качественного и количественного анализа. Мы рекомендуем определять молекулярную массу веществ с помощью описанных в настоящей книге методов масс-спектрометрии или осмометрии в паровой фазе вместо приведенного в предыдущих изданиях метода Раста, основанного на измерении понижения температуры замерзания. Этот метод слишком часто приводит к неудачным результатам. В соответствии с многочисленными пожеланиями читателей в настоящем издании группы растворимости вновь обозначены буквами латинского алфавита (5], Зг, А1 ит.д.), как и в четвертом издании. Кроме того, характеристики растворимости дополнены указаниями об отношении к органическим растворителям. Это приводит к результатам, полезным для спектрального анализа, хроматографического анализа и для перекристаллизации. [c.10]

    Температуры плавления и кипения. Температуры плавления и кипения даны для давления 760 мм рт. ст. значения температур кипения, определенных при других давлениях, снабжены надстрочным индексом, указывающим величину давления в мм рт. ст. Например, 85 означает, что вещество имеет температуру кипения 85 °С при давлении 15 мм рт. ст. [c.419]


    Перед началом лабораторных работ следует напомнить учащимся, что каждое вещество характеризуется определенными свойствами. Основные физические свойства агрегатное состояние, цвет, запах, температура плавления, температура кипения, плотность, растворимость и т. д. [c.36]

    Каждое чистое вещество характеризуется определенными физическими свойствами цветом, температурой плавления, температурой кипения, плотностью и др., поэтому чистоту вещества можно определить, изучая его свойства. Наиболее подходящими являются такие свойства, которые могут быть измерены и выражены числом. Полученные величины сравнивают с табличными данными для испытуемого вещества. На практике чаще всего определяют температуру плавления, температуру кипения и плотность. [c.41]

    Когда отдельные атомы одного и того же элемента тем или другим путем химически соединяются между собой, то образуются простые вещества. У образовавшихся простых веществ появляются некоторые новые свойства, которых не было у отдельных атомов. Например, простые вещества (железо, сера и др.) характеризуются определенной температурой плавления и кипения, отдельные же атомы не обладают этими свойствами. Простое вещество есть форма существования элемента в свободном состоянии. [c.23]

    Под химически чистым веществом понимается такое вещество, которое, будучи подвергнуто воздействию, имеющему целью разделение его на составные части, сохраняет неизменными химический состав и физические свойства. Из этого вытекает, что критерием чистоты органического вещества, предназначенного для анализа, являются безуспешность попыток разделить его, а также постоянство его физических констант. В целях подтверждения чистоты органического вещества чаще всего пользуются определением физических констант, поскольку этот способ позволяет выполнить определение быстро и точно, что относится в особенности к определению температур плавления и кипения. [c.225]

    Хлористый натрий, сахар, этиловый спирт и вода представляют собой чистые вещества. Каждое из этих веществ характеризуется определенными свойствами, например давлением пара, температурой плавления, температурой кипения, плотностью. Предположим, что мы смешиваем некоторые из этих веществ. Хлористый натрий, внесенный в воду, растворяется в ней. Твердое вещество исчезает, переходя в жидкую фазу. Точно так же растворяется в воде сахар. Если добавить к воде этиловый спирт, то два чистых вещества смешиваются и образуют жидкость, по внешнему виду похожую на воду и спирт. Смеси соль — вода, сахар — вода, этиловый спирт — вода называются растворами. От чистых веществ растворы отличаются тем, что их свойства изменяются в зависимости от относительных [c.103]

    Каждое чистое вещество имеет определенные физические свойства цвет, температуру плавления, температуру кипения, плотность и другие, поэтому чистоту вещества можно определить изучая эти свойства. Наиболее подходящими для оценки чистоты вещества являются те свойства, которые могут быть оценены количественно. Полученные величины сравнивают с данными таблиц для испытуемого вещества. На практике чаще всего определяют температуру плавления, температуру кипения и плотность. Примеси большей частью понижают температуру плавления и последняя не остается постоянной от начала плавления до полного расплавления вещества, как в случае чистого вещества. Температура кипения жидкости при наличии примесей повышается и не остается при кипении постоянной, [c.38]

    В природных условиях вещества почти никогда не встречаются в совершенно чистом состоянии — они всегда содержат большее или меньшее количество примесей. Поэтому первая задача, с которой сталкивается химия,— это выделение вещества в чистом виде. Вещество, максимально освобожденное от посторонних примесей, обладающее определенным химическим составом и постоянными свойствами, называется химическим индивидуумом. Постоянство свойств химического индивидуума характеризуется только ему присущими константами, плотностью, температурой плавления, температурой кипения и др. [c.8]

    Нельзя думать, что молекула данного вещества является носителем всех свойств этого вещества, т. е. не только химических, но и физических. Каждое вещество характеризуется определенными и постоянными для него плотностью, температурой плавления, температурой кипения оно может быть в любом из трех состояний —твердом, жидком и газообразном. Можно ли говорить [c.20]

    При работе с малыми количествами вещества используют метод Сиволобова. По этому методу 0,5 мл исследуемой жидкости наливают в стеклянную трубку диаметром ж 6 мм, в которую погружают незапаянным концом вниз капилляр для определения температуры плавления. Трубку прикрепляют к термометру, как показано на рис. 57. Термометр помещают в прибор для определения температуры плавления. При медленном нагревании сначала наблюдается слабое, а затем и бурное выделение пузырьков пара из капилляра. Температурой кипения считают показания термометра в тот момент, когда начинается бурное образование пузырьков. Ошибки этого метода могут составлять 5°С. [c.86]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    Методы ДТА и ТГ используют как количественный анализ для определения температур плавления или кипения, удельной теплоемкости соединений и при исследовании реакций для определения теплогы фазовых переходов и кинетических параметров. В аналитической химии с гюмошью этих методов проводится экспресс-анализ для выявления различий между отдельными партиями сырья, для определения чистоты и термостабильности продукта, для количественной оценки вещества или смеси веществ. [c.349]

    При определении температуры плавления следует пользоваться проверенным термометром. Нагревание проводят таким образом, чтобы скорость повышения температуры вблизи точки плавления не превышала 0,5 С в 1 мнн. В качестве теплоносителя в зависимости от измеряемой температуры плавления можио использовать глицерин (до 150°С), беэводиую серную кислоту (до 300°С). Однако эти вещества гигроскопичны, а при поглощении вОды температура кипения их уменьшается. Вместо сериой кислоты иногда используют парафиновое масло, однако оно менее теп-лопров.одно, чем серная кислота, что вносит ошибку в измерение вследствие неравномерности нагревания прибора. Для измерения более высоких температур плавления лучше всего воспользоваться медным нлн алюминиевым блоком (рнс. 26). [c.56]

    Высокомолекулярные вещества вследствие их большого молекулярного веса нелетучи и не способны перегоняться. По той. же причине высокомолекулярные вещества весьма чувствительны к воздействию различных внешних факторов. Макромолекуль легко распадаются под действием самых незначительных количеств кислорода и других деструктирующих агентов. Причина различия в чувствительности к химическим воздействиям низко- и высокомолекулярных веществ становится понятной из следующего примера. Допустим, что- для расщепления одной молекулы вещества на две достаточно одной молекулы кислорода. Тогда для низкомолекулярного вещества с молекулярным весом, равным, например 100, количество кислорода, необходимое для такого расщепления, должно составлять 327о от его массы. Если же молекулярный вес окисляемого вещества 100 000, то кислорода для той же цели потребуется лишь 0,032% от его массы, что на I г вещества составит всего 32-10 г кислорода, т. е. количество, которое с трудом может быть обнаружено даже с помощью самых точных аналитических весов. Большинство высокомолекулярных веществ при повышении температуры размягчается постепенно и не имеет определенной температуры плавления. Температура разложения этих веществ ниже температуры кипения. Следовательно, высокомоле-.сулярные вещества могут находиться только в конденсированном состоянии. [c.417]

    В отличне от энантиомеров днастереомеры могут иметь различные температуры плавления, температуры кипения, показатели преломления, растворимость, Днпольные моменты и т. д., при реакции с определенным реагентош они могут давать различные вещества.. Оптическое вращение диастереомеров может отличаться как по величине, так н по знаку. [c.49]

    Ранние попытки получения тиоалкоксифосфазенов методом с тиоалкоксидом натрия приводили в лучшем случае к получению плохо охарактеризованных продуктов [203], состав которых был близок к полностью замещенным соединениям. Первый полный ряд тиоалкоксифосфазенов был получен Керролом и Шоу [15]. Эти соединения, которые все без исключения имели определенные температуры плавления или кипения, часто были мало или совсем не похожи на вещества, синтезированные в ранних работах. [c.71]

    Другим источником ошибок при определении температур плавления является то, что температура капиллярЬ, где находится вещество, и температура шарика ртути термометра ие всегда одинаковы. Наиболее надежным способом достижения равенства температур капилляра н шарика термометра является испадьзованне в качестве баин для нагревания открытого стаканчика с мешалкой перемешивание обеспечивает равномерное нау-реванне всей находящейся в стаканчике жидкости. Для того чтобы можно было осуществлять перемешивание без особых затруднений, аппарат должен быть открытым. Жидкость же, служащая для нагрева, не, должна быть ни летучей, ни сильно гигроскопичной. Можио рекомендовать парафиновое масло, удобное для применения при умеренных температурах при бойчее высоких температурах оно быстро темнеет. Поэтому при определении температур плавления, превышающих 200°, парафиновое масло приходится очень час о менять. По этой причине более удобно пользоваться закрытыми прибора Лн, которые позволяют применять в качестве жидкости для нагревания концентрированную серную кислоту. Серная кислота остается бесцветной вплоть до температуры ее кипения [c.45]

    Для ускорения начального этапа работы и иллюстрации схемы идентификации целесообразно предложить студентам в качестве первого неизвестного вещества кислоту, которая может титроваться щелочью. Студентам сообщают, что неизвестные вещества могут титроваться. Задача обучаемых состоит в проведении элементого анализа, определении температур плавления или кипения и эквивалента нейтрализации. На основе этих данных должно быть рассчитано возможное значение молекулярной массы вещества. В других случаях студенты могут получать неизвестное вещество, для которого известны результаты его масс-спектрометрического исследования. Далее, если неизвестное вещество содержит галогены или азот, студент должен выбрать и провести две-три (но не более) классификационные реакции. Затем он должен составить перечень возможных веществ и их производных, руководствуясь таблицей кислот, приведенной в приложении П1. Одно из этих производных должно быть приготовлено и включено в отчет о работе (разд. 2.11). Первая задача должна быть выполнена в течение двух трехчасовых лабораторных занятий. [c.18]

    Структура органического соединения определяется наиболее легко в том случае, если можно показать, что его физические свойства (температура плавления, температура кипения, показатель преломления, плотность, растворимость, спектры поглощения электромагнитного излученця, масс-спектр, дифракция рентгеновских лучей и т. д.) или его химические свойства идентичны свойствам ранее полученного вещества с известной структурой. Отсюда следует, что при идентификации соединений путем сравнения их свойств со свойствами известных соединений чистота имеет первостепенное значение. О чистоте данного вещества часто судят по его температуре кипения или плавления и растворимости — температура плавления обычно оказывается наиболее чувствительной к примесям и наиболее легко определяемой. В целом, однако, малые количества примесей часто оказывается трудно определить этими способами. В настоящее время становится обычным определение чистоты путем применения различных методов сверхочистки (или сверхразделения ) при этом выясняется, могут ли быть отделены какие-либо примеси и изменяются ли при этом свойства образца. [c.24]

    Низкомолекулярные соединения (фенол, уксусная кислота, бензол и др.), являясь химическими индивидуумами, характеризуются постоянными и четко выраженными физическими свойствами. Они обладают определенной температурой плавления и кипения, при затвердевании же, как правило, кристаллизуются их молекулярный вес—величина строго определенная. Высокомолекулярные соединения не являются индивидуально ными веществами, а представляют собой смесь полимергомоло-Ч гов, т. е. полимеров, относящихся к одному гомологическому ряду, но с различным молекулярным весом вследствие этого они плавятся и затвердевают в некотором интервале тем- ператур. [c.17]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]

    Следует обратить внимание учащихся на то, что в ГОСТы включено большое число методик, уже освоенных ими в лабораториях качественного и количественного анализов, анализа органических веществ, инструментальных методов анализа. Кроме того, существуют специальные ГОСТы на методы анализа, применяемые для контроля качества широкого круга химических продуктов, например, на определение температуры плавления, температуры кристаллизащш, цветности (по платино-кобальтовой шкале), насыпной плотности, температуры кипения и многих других показателей. В этих ГОСТах подробно описаны все приемы работы при вьшолнении анализа. Существуют специальные ГОСТы и на химические реактивы. В табл. 17 приведены технические требования, содержащиеся в ГОСТе на реактивный гидроксид натрия. Следует обратить внимание учащихся, что нормы технических показателей на химические реактивы связаны с применением их прежде всего в химическом анализе. Поэтому здесь жестко ограничивается содержание тех примесей, которые могут снизить точность анализа другие примеси могут нормироваться не так жестко. Например, в реактивном гццроксиде натрия (см. табл. 17) для марки ч д.а. допускается примесь 1,0% углекислого натрия, а в техническом продукте -не более 0,8%. [c.264]


Смотреть страницы где упоминается термин Р а б о т а 3. Определение температуры плавления и температуры кипения веществ: [c.397]    [c.399]    [c.200]    [c.54]   
Смотреть главы в:

Руководство к практическим занятиям по неорганической химии -> Р а б о т а 3. Определение температуры плавления и температуры кипения веществ




ПОИСК





Смотрите так же термины и статьи:

Температура определение

Температура плавления

Температура плавления кипения



© 2025 chem21.info Реклама на сайте