Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотные производные сахаров

Рис. 22.9. Схема потоков четырехканального анализатора, применяемого при ионообменной хроматографии кислотных производных сахаров, в которой в качестве подвижной фазы используют уксусную кислоту или водный раствор ацетата натрия (первый канал — хромовая кислота, второй канал — карбазол, третий и четвертый каналы — перйодат) [75]. Рис. 22.9. <a href="/info/25917">Схема потоков</a> <a href="/info/1333816">четырехканального</a> анализатора, применяемого при <a href="/info/5708">ионообменной хроматографии</a> <a href="/info/447006">кислотных производных сахаров</a>, в которой в качестве <a href="/info/5672">подвижной фазы</a> используют <a href="/info/1357">уксусную кислоту</a> или водный <a href="/info/1177741">раствор ацетата натрия</a> (первый канал — <a href="/info/17363">хромовая кислота</a>, второй канал — карбазол, третий и четвертый каналы — перйодат) [75].

    Д. Кислотные производные сахаров [c.114]

    В качестве таких производных обычно используют тритиловые и бензиловые эфиры и некоторые другие производные. Этот прием лежит в основе двух общих методов синтеза производных сахаров со свободным первичным гидроксилом и свободным полуацетальным гидроксилом. Первые из. них получают путем тритилирования, которое, как правило, избирательно проходит по первичному гидроксилу, после чего остальные гидроксилы защищают подходящими группами. Тритильную защиту затем удаляют гидрогенолизом или мягким кислотным гидролизом, например  [c.461]

    При разделении кислотных или щелочных производных сахара на ионообменных смолах важными факторами являются не только условия равновесного обмена (рК растворенного вещества), но также молярная концентрация замещающего иона, pH образующего буферного раствора и температура [42]. Предполагается, что различия в ширине пиков не соответствуют обычной картине, заключающейся в том, что чем позже данный образец выходит из колонки, тем шире его пик вследствие размыва. Такие различия объясняются присутствием различных веществ, аномеров и конформеров и относительными скоростями их взаимных перегруппировок [42]. [c.68]

    Самуэльсон и Тэде [71] использовали двухканальный анализатор в хроматографии сахарных кислот на дауэксе 1-Х8 (СНзСОО ) (см. разд. V, Д, кислотные производные сахаров). [c.78]

    Методы синтеза Г. основаны на нуклеоф. замещении при гликозидном центре восстанавливающих сахаров и их производных. Кислотный алкоголиз сахаров в избытке спирта приводит к смеси четырех изомерных Г, (а- и Р-пиранози-дов, а- и р-фуранозидов), где в состоянии равновесия преобладают пиранозиды. Конкретный состав смеси завист от конфигурации углевода. Для стерео- и региоселективно-го синтеза Г. с определенной конфигурацией гликозидного центра и размером цикла применяют гликозилирование агликонов производными углеводов с активированным гликозидиым центром и полностью защищенными спиртовыми гидроксилами. [c.576]

    Алкилиденовые производные сахаров проявляют все свойства обычных ацеталей и кеталей. Они устойчивы в нейтральной и щелочной средах, но легко расщепляются с выделением исходного моносахарида при кислотном гидролизе, алкоголизе и ацетолизе. Наиболее широкое распространение в синтетической химии углеводов получили продукты конденсации моносахаридов с ацетоном (изопропилиденовые производные) и бензальдегидом (бензилиденовые производные). Несмотря на принципиальное сходство, эти два типа алкилиденовых производных иногда довольно существенно различаются по своим химическим свойствам, что позволяет по-разному использовать их в синтетической практике. [c.168]


    Химические методы доказательства строения изопропилиденовых производных сахаров, основанные на частичном гидролизе, предполагали отсутствие миграции изопропилиденового остатка. Однако этот факт был надежно доказан только недавно с помощью ЯМР-спектроскопии. Так, при мягком кислотном гидролизе соединения LXXXI, имеющего невыгодный аЭ-диоксолановый цикл, моноацетонид LXXXII не образуется и в ЯМР-спектре не появляются сигналы протонов СНР-групп [c.176]

    Бензилиденовые производные сахаров, так же как и рассмотренные выше изопропилиденовые производные, нашли широкое применение в синтетической химии углеводов. Стереохимические требования к реакции бензальдегида с сахарами несколько иные, чем для ацетона. Отличие состоит в том, что бензальдегид предпочтительнее реагирует с -гликоль-ными группировками и образует ж-диоксановый цикл. Кроме того, бензнл-иденовый остаток может быть удален не только кислотным гидролизом, но и в нейтральной среде гидрогенолизом над катализаторами платиновой группы. После присоединения бензилиденового остатка в молекуле моносахарида возникает новый асимметрический атом углерода и в ряде случаев получающиеся днастереомеры могут быть разделены. Однако в тех случаях, когда бензальдегид реагирует с образованием Л1-диоксано-вого цикла, обычно образуется только один диастереомер, в котором фенильный остаток занимает экваториальное положение. [c.176]

    Установление строения бензилиденовых производных сахаров представляет собой сложную проблему. Известно много представителей таких производных (в особенности для ациклических производных моносахаридов), строение которых не установлено до сих пор. Химические методы доказательства структуры, основанные главным образом на частичном кислотном гидролизе с последующим метилированием и идентификацией частично метилированных сахаров, позволяют, в лучшем случае, определить только места присоединения бензилиденового остатка. Но, поскольку при образовании бензилиденового производного возникает асимметрический центр (бензилиденовый атом углерода), возможно образование [c.180]

    Этилиденовый остаток легко снимается при кислотном гидролизе. Известны также продукты конденсации сахаров с фурфуролом Многочисленные попытки использовать циклогексилиденовые производные, по-видимому, к настоящему времени оставлены, так как циклоге.ксанон в реакциях с сахарами не имеет никаких преимуществ перед ацетоном В отличие от всех рассмотренных выше альдегидов и кетонов формальдегид хлораль и трифторацетон реагируют с производными моносахаридов только в очень жестких условиях , что, по-видимому, объясняется неустойчивостью карбкатиона, с образованием которого связана реакция (см. стр. 168). Неустойчивость промежуточного карбкатиона объясняется отрицательным индукционным эффектом таких групп, как Fg или СС1з, и отсутствием электронодонорных свойств у атома водорода. По этой же причине эти алкилиденовые производные сахаров чрезвычайно устойчивы к кислотному гидролизу, что сильно сужает возможности их синтетического использования. [c.182]

    Если рассматривать удаление воды как чисто физический процесс, то ему должно способствовать повышение температуры, и, действительно, вся вода удаляется при 365 °С, т. е. при достижении критической температуры воды [238]. Однако для большинства органических веществ повышение температуры сопровождается выделением других летучих соединений. На рис. 3-4 показаны кривые зависимости давления паров воды от температуры для некоторых органических веществ. (Кривые построены в полулогарифмическом масштабе по табличным данным, опубликованным Стуллом [333 ].) Даже при относительно низких температурах давление паров воды над растворителями обычно превышает соответствующее парциальное давление паров воды в окружающей среде, что обеспечивает испарение значительных количеств воды в процессе относительно длительного высушивания. На ранних стадиях высушивания вместе с удаляемой водой могут также удаляться жиры, свободные кислоты, азотистые основания и т. д. [270]. При повышенных температурах заниженные результаты могут быть обусловлены гидролизом таких веществ,, как соли, дисахариды или крахмал [270]. После того как свободная вода будет в основном удалена, дальнейшее высушивание может сопровождаться выделением дополнительных количеств воды за счет протекания реакций окисления и конденсации, например самоокисление жиров [270], кислотная конденсация сахаров [129, 159, 229], конденсация восстанавливающихся соединений с производными аминокислот [58, 192, 310]. Таким образом, при определении воды по потере массы получаются заниженные результаты, если высушивание сопровождается гидролизом или окислением, или же завышенные результаты, если при высушивании происходят реакции конденсации. [c.73]

    АЦЕТОЛИЗ, частный случай ацидолиза, когда в кач-ве расщепляющего агента примен. уксусная к-та и уксусный ангидрид. Широко использ. в химии углеводов. При А. гликозидов, олиго- или полисахаридов образуются ацетилиро-ванные производные сахаров. Гликозидные связи обладают разл. устойчивостью к А., не совпадающей часто с их устойчивостью к кислотному гидролизу. А. использ. для получ. олигосахаридов из полисахаридов (напр., целлобиозы из целлюлозы), при этом выход целевых продуктов выше, чем при кислотном гидролизе. [c.63]


    В ряде работ описаны методы разделения смесей жирных кислот. Фэрберн и Харпер использовали устройство из двух колонок, в первой из которых задерживались кислоты с 2 и 3 углеродными атомами, а во второй — кислоты с числом атомов углерода от 4 до 8. Описано разделение производных сахаров на колонках силикагеля и порошкообразной целлюлозы Уайт и Воген количественно выделили три изомерных крезола и фенрл из смесей, полученных при кислотной обработке каменноугольной смолы. Мартину и Портеру на колонке силикагеля удалось разделить кристаллический энзим — рибону-клеазу — на два энзиматически активных компонента. Бун с сотр. о показали, что исходный пенициллин можно разделить на пять отдельных пенициллинов. [c.541]

    Как было впоследствии найдено, многие полисахариды образуют 0-маннозу при гидролизе. В книге Фишера Руководство по получению органических препаратов (1908) описывается приготовление этого сахара путем кислотного гидролиза стружек — отходов, получающихся при вытачивании пуговиц из так называемой растительной слоновой кости — семян пальмы тагуа. В прописи рекомендуется выделять 0-маннозу через фенилгидразон с последующим разложением этого груднорастворимого производного путем обменной реакции с бензальдегидом. [c.537]

    Дисахариды. — Наиболее распространенными в природе дисахаридами являются сахаро за (тростниковый сахар), лактоза (молочный сахар) и мальтоза, причем последняя в свободном состоянии встречается довольно редко. Большое значение имеют дисахариды мальтоза и целлобиоза, поскольку они представляют собой продукты гидролиза крахмала и целлюлозы соответственно. По растворимости в воде дисахариды очень сходны с моносахаридами. Сахароза значительно менее устойчива к действию кислот, чем метилгликозиды, и легко расщепляется на О-глюкозу и -фруктозу при кислотном гидролизе, а также под действием фермента инвертазы. Сахароза не восстанавливает фелингову жидкость и не дает производных с фенилгидразином, откуда следует, что обе ее структурные единицы не содержат свободных гликозидных гидроксилов, являющихся потенциальными карбонильными группами и, следовательно, в сахарозе оба моносахарида связаны друг с другом гликозидными связями. В отличие от большинства сахаров сахароза легко кристаллизуется, по-видимому, из-за того, что она не подвергается мутаротации в растворе. Циклическая структура обоих моносахаридов сахарозы доказана путем гидролиза ее октаметилового эфира (Хеуорс, 1916). [c.555]

    В пром-сти О-А. и п-А. получают метоксилированием соотв. о- и и-нитрохлорбензолов с послед, восстановлением образующихся нитроанизолов полисульфидом Na или NaHS при 135 °С и 0,2 МПа, а также под действием Н в присут. никелевых кат. (и-А.). jk-A. синтезируют ацетили-рованием л(-аминофенола с послед, метилированием в щелочной среде и омьшением НС1. п-А. применяют в произ-ве азотолов, азоаминов, дисперсных и катионных красителей, капрозолей, акрихина, как реагент, образующий с сахарами и их производными окрашенные соед. при хроматографировании на бумаге. о-А. используют для получения гваякола, азотола, прямых, кислотных и жирорастворимых красителей. [c.164]

    Из двух типов изопропилиденовых производных (ЬХ1У и ЬХУ), которые известны для ациклических фарм сахаров, ЬХ1У, включающий первичный спиртовый гидроксил, образуется легче, поскольку первичная спиртовая группа, являясь более кислотной, быстрее реагирует с ацетоном. Образующийся при конденсации промежуточный полукеталь (см. стр. 168) затем циклизуется по соседней вторичной гидроксильной группе. [c.170]

    При кислотном гидролизе производного ЬХ1 был впервые получен синтетический Д-глюкозамин, идентичный природному глюкозамину, что и явилось первым доказательством структуры этого аминосахара. Раскрытие эпоксидного цикла можно проводить также азидом натрия с последующим гидрированием полученного азида Аминолиз 3,4-ангидропро-изБодных сахаров мало изучен и для синтеза З-амино-З-дезокси- и 4-амино- [c.287]

    Этот метод основан на устойчивогти метиловых эфиров сахаров в условиях кислотного гидролиза гликозидных связей и состоит в метилировании всех свободных гидроксилов исследуе юго олигосахарида с последующим гидролизом гликозидных связей и идентификацией образовавшихся метилированных производных моносахаридов. В этих соединениях остаются свободными только те спиртовые гидроксилы, которые участвовали в образовании гликозидных связей или окисных циклов, что позволяет судить о размерах циклов моносахаридных звеньев и местах присоединения моносахаридных остатков друг к другу в молекуле исходного олигосахарида. [c.433]

    Определение моносахаридного состава проводится анализом продуктов кислотного гидролиза или. чаще, мета-нолиза сахарида. Состав продуктов кислотного гидролизата анализируется с помощью хроматографии или электрофореза на бумаге. Нередко используется коммерческий углеводный анализатор, разделение осуществляется на ионообменных смолах методом распределительной хроматографии в водно-спиртовой смеси или в виде боратных комплексов сахаров. Скорость гидролиза гликозидных связей, образованных остатками нейтральных, амино- и дезокси-сахаров, различна. Легче всего отщепляются остатки сиаловых (N-ацетилнейраминовой, N-гликолилнейраминовой) кислот, труднее всего расщепляются свяэи, образованные остатками амино-сахаров и уроновых кислот. Фуранозиды гидролизуются значительно быстрее пиранозидов. В итоге при гидролизе олигосахарида может иметь место неполное расщепление связей или кислотная деструкция образующихся моносахаридов, что искажает результаты анализа. Лучшие результаты дает метанолиз в присутствии газообразного хлористого водорода (1.7 н. H l, 80 С, 18 ч) — в этом случае образуются метилгликозиды, устойчивые к кислотной деструкции. Качественный и количественный состав продуктов метанолиза определяется методом газожидкостной хроматографии в виде триметилсилильных или трифторацетильных производных. [c.463]

    Простейшими и наиболее важными олигосахаридами являются дисахариды. При кислотном или ферментативном гидролизе дисахариды образуют моносахариды, которыми часто бывают гексозы. Гексозы соединены между собой 0-глюкозидной связью, но в ее образовании обязательно участие только одного полуацетального гидроксила. Действительно, многие дисахариды обнаруживают восстанавливающие свойства, которые указывают на наличие в остатке сахара легко раскрывающейся полуацетальной функции. Однако в том случае, если в образовании связи участвуют аномерные углеродные атомы обеих гексоз, как в сахарозе, то сахар, подобно ме-тилгликозиду (ацеталю), не обладает восстанавливающими свойствами и не образует фенилозазона или других производных по карбонилу (если условия опыта не приводят к гидролизу ацетальной [c.27]

    При действии бромной воды происходит присоединение к 4,5-двойной связи и получается 5,5-дибром-4-оксидигидропроиз-водное, которое под действием щелочи превращается в гликозидное производное (вероятно, ациклическое), из которого затем при кислотном гидролизе легко освобождается сахар [118, 119]. [c.41]

    Аминосахара. В углевод-белковых комплексах наиболее часто содержатся 2-амино-2-дезоксисахара и их ацетильные производные. Аминосахара наряду с обычными свойствами моносахаридов проявляют особенности в поведении, которые обусловлены присутствием аминогруппы, — обладают основными свойствами, легко образуют соли с кислотами. Аминогруппа сахаров легко алкилируется и ацилируется и взаимодействует с альдегидами с образованием шиффовых оснований. Для получения гликозидов аминосахаров требуется предварительная защита аминогруппы, например с помощью ацетилирования. Гликози-ды аминосахаров в отличие от обычных гликозидов более стабильны в условиях кислотного гидролиза. Аминосахара могут претерпевать перегруппировку Лобри де Брюина — Альберда ван Экенштейна. а-Аминогликольная группировка в аминосахарах окисляется йодной кислотой аналогично а-гликольной группировке в альдозах, но устойчива в случае замещенной аминогруппы. [c.40]


Смотреть страницы где упоминается термин Кислотные производные сахаров: [c.152]    [c.63]    [c.164]    [c.105]    [c.455]    [c.531]    [c.61]    [c.201]    [c.331]    [c.184]    [c.411]    [c.682]    [c.95]    [c.70]    [c.320]    [c.138]    [c.518]    [c.14]    [c.22]    [c.182]    [c.116]   
Смотреть главы в:

Жидкостная колоночная хроматография том 2 -> Кислотные производные сахаров




ПОИСК





Смотрите так же термины и статьи:

Кислотные производные

Сахара производные



© 2025 chem21.info Реклама на сайте