Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы в смолисто-асфальтеновых веществах

    Содержащиеся в различных количествах в разных нефтях металлы (ванадий и никель) и асфальто-смолистые отравляющие катализаторы вещества концентрируются в остатках от перегонки нефти. Изучение металлоорганических соединений, асфальто-смолистых веществ, продолжительности пробегов промышленных установок и отработанных катализаторов позволило модифицировать катализатор и технологическое оформление процесса гидрообессеривания нефтяных остатков. Оказалось, что в случае содержания суммы металлов в исходном остатке менее 25 млн-1 процесс можно проводить с высокими технико-экономическими показателями в реакторе со стационарным слоем катализатора одного вида, характеризующегося высокой гидрообессеривающей активностью и небольшой металлоемкостью. При содержании металлов 25-50 млн 1 более эффективно использование системы из двух видов катализаторов, причем первый должен обладать высокой металлоемкостью и невысокой гидрообессеривающей активностью. Другой катализатор должен быть высокоактивным в реакции гидрообессеривания. Последние достижения в области катализаторов и технологического оформления процесса позволяют получать из тяжелых нефтяных остатков низкосернистые котельные топлива, вырабатывать сырье для каталитического крекинга и производства низкосернистого кокса, решать задачу безотходной, экологически чистой переработки самых тяжелых нефтей с высоким содержанием металлов и асфальтенов. Однако для этого требуется резко улучшить технико-экономические показатели по сравнению с каталитическим крекингом понизить на целый порядок себестои- [c.194]


    В настоящее время данных для полной характеристики высокомолекулярной части нефтей, особенно неуглеводородных ее компонентов, пока еще очень мало. Между тем знание состава и свойств этой части нефти имеет решающее значение для выбора технологии и режима химической безостаточной ее переработки. Поэтому весьма важным направлением исследования высокомолекулярной части нефти является химическая инвентаризация по таким показателям, как суммарное содержание смолисто-асфальтеновых веществ и соотношение в них основных компонентов (смол и асфальтенов), содержание металлов, в первую очередь ванадия, в смолисто-асфальтеновой части. [c.108]

    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]


    Основные трудности, возникающие при переработке нефтяных остатков с богатым содержанием смолисто-асфальтеновых веществ, справедливо относят за счет асфальтенов. Неудивительно поэтому, что в последнее время начали появляться патенты и статьи, в которых предлагаются различные варианты процессов, как чисто термических, так и термокаталитических, осуществляемых в несколько ступеней, одна из которых направлена на освобождение сырья от асфальтенов или по крайней мере на уменьшение содержания последних в сырье. Чаще, конечно, такие варианты технологических процессов пытаются применить в тех случаях, когда переработка тяжелых нефтяных остатков включает применение катализаторов, так как асфальтены и содержащиеся в них металлы (V, №) вызывают быстрое закоксование и дезактивацию катализаторов. Выше мы уже приводили пример термокаталитической переработки тяжелых нефтяных остатков, когда в реагирующую смесь сырья и катализатора вводился высокопористый минеральный адсорбент для ускорения процесса разложения асфальтенов на углерод (кокс) и металлы. В результате были получены жидкие продукты с более низким содержанием металлов, чем в сырье. Они менее подвержены коксованию и потому более легко поддаются дальнейшей переработке в каталитических процессах гидрирования. [c.252]

    Термокаталитическая деасфальтизация. Метод предусматривает осаждение смолисто-асфальтеновых веществ под давлением в присутствии катализатора и водорода, концентраты асфальтенов отделяются фильтрованием, центрифугированием или отстаиванием [235]. Например, при использовании хлоридов металлов в термокаталитической деасфальтизации (290—480°С, давление 3,5— 14 МПа) осуществляется не только деасфальтизация, но и 80— 100 % деметаллизация [237, 238]. [c.99]

    В смолисто-асфальтеновых веществах концентрируются почти все металлы, находящиеся в нефти. При фракционировании асфальтенов и смол металлы распределяются неодинаково. Так, при фракционировании асфальтенов ванадий в большей степени переходит в неполярную часть (1,13—2,16 по сравнению с 0,58—0,6 в полярной). При хроматографировании смол было найдено,. что железо, никель, сурьма и бром преимущественно концентрируются в менее полярных, а натрий, хром, ртуть, серебро, кобальт, марганец и хлор — в более полярных фракциях [376]. Эти данные могут характеризовать комплексообразующую способность различных фракций по отношению к разным элементам. [c.172]

    В смолисто-асфальтеновых веществах концентрируются почти все металлы, находящиеся в нефти. При фракционировании асфальтенов и смол металлы распре- [c.99]

    Известно, что и такая важнейшая характеристика нефтей, как содержание в них серы, азота, кислорода, смол и асфальтенов, меняется симбатно. Это подтверждает справедливость концепции неразрывной связи металлов с нефтяными гетероатомами. Однако точной корреляции между концентрациями металлов и гетероатомов или высокомолекулярных соединений в нефтях, такой, которая в равной мере была бы верна для нефтей из любых регионов и комплексов отложений, не существует. Так, нефти из карбонатных отложений существенно обогащены микроэлементами, особенно серой, по сравнению с нефтями из терригенных пород [6]. Нефти из слабо погруженных палеозойских залежей в среднем значительно богаче смолисто-асфальтовыми веществами, чем нефти из остальных стратиграфических комплексов [14]. Однако соответствующих изменений среднего [c.205]

    При адсорбционно-хроматографическом фракционировании нефтяные ВМС так же, как и при гель-хроматографии, обмениваются металлами с поверхностью адсорбента, в результате суммарное содержание микроэлементов в выделенных продуктах становится неидентичным их концентрации в исходных веществах. Способность к обмену и связыванию различных микроэлементов смолисто-асфальтеновыми веществами должна определяться их химически.мн свойствами (функциональным составом) и, следовательно, находиться в связи с химическим типом нефти. Для выяснения характера такой связи нами изучены изменения концентраций микроэлементов в смолах и асфальтенах из западно-сибирских нефтей различных химических типов в процессе их хроматографического разделения на силикатных адсорбентах. Анализировались фракции смол и асфальтенов из нафтеновой нефти Русского месторождения (сеноман, пласт ПКз, средняя глубина залегания около 890 м), из метаново-нафтеновой нефти Советского месторождения (валанжин, БВз, [c.218]

    Смолисто-асфальтеновые вещества представляют собой неуглеводородные высокомолекулярные компоненты нефти, которые содержат 78—88% углерода, 8—10% водорода и 4—14% гетероатомов [82]. В смолисто-асфальтеновой части сконцентрированы полностью все металлы, присутствующие в сырых нефтях (V, N1, Ре, Си, Мд, Са, 11, Мо, Со, Сг, А1 и др.). Усредненные данные по элементному составу смол и асфальтенов приведены в табл. 10. [c.34]

    Химический метод основан на удалении смол и асфальтенов химическими реагентами, такими, как хлористоводородная, хлорсульфоновая, азотная, фосфорная кислоты, расплав гидроокисей щелочных металлов, раствор иода, в уксусной кислоте и др. Общим их недостатком является дороговизна, химическое взаимодействие со смолисто-асфальтеновыми веществами и невозможность регенерирования реагентов. [c.6]


    При термокаталитической деасфальтизации осуществляется осаждение смолисто-асфальтеновых веществ под давлением водорода в присутствии катализаторов. В качестве катализаторов используют хлориды металлов процесс происходит при температуре 290—480 °С и давлении 3,5—14 МПа. Концентраты асфальтенов отделяют фильтрованием, центрифугированием или отстаиванием. Одновременно с деасфальтизацией на 80—100 % (по массе) происходит деметаллизация. [c.222]

    Смолисто-асфальтеновые вещества (САВ) составляют самую большую группу неуглеводородных соединений нефти. САВ по компонентному составу приближаются к природным асфальтенам и являются наиболее высокомолекулярными соединениями нефти. Это гетероорганические соединения, в состав которых как постоянные элементы входят углерод, водород, кислород, почти постоянно присутствуют сера, азот, металлы (Fe, Mg, Ni и другие), углеродный скелет составляет от 80 до 90% молекулы САВ. В среднем на каждые 50 атомов углерода приходится как максимум 2-3 атома серы, 1,5-2 атома азота и 2-3 атома кислорода. [c.24]

    По-видимому, более перспективное направление глубокой переработки нефти должно включать деметаллизацию нефтяных остатков. Основное количество металлов, присутствующих в нефти, концентрируется в смолах и асфальтенах, поэтому предлагаются процессы деметаллизации, связанные с адсорбцией и коксованием асфальтенов и смолистых веществ на твердых теплоносителях и неактивных катализаторах (контактное коксование, термодеструкция на железных окатышах и т. п.), (схема 3). Отлагающийся на поверхности адсорбентов кокс выжигается. Общим недостатком этих методов является удаление вместе с металлами значительной части органического вещества. [c.213]

    Далее, как уже указывалось, высокотемпературное окисление протекает в совокупности с процессами коррозии, продуктами которой являются окислы, сульфиды, иногда меркаптиды металлов. Эти продукты также могут находиться в топливе в виде коллоидных растворов или взвесей и коагулировать вместе с асфальтенами и карбоидами. Кроме того, происходит конденсация продуктов окисления, например сернистых соединений с азотистыми и т. д., возможно также механическое вовлечение в осадок минеральных загрязнений, сопровождающих топливо, особенно вследствие адсорбции на поверхности их частиц смолистых веществ. [c.136]

    Принимая во внимание ранее упомянутые сведения относительно химических изменений, можно предположить, что в результате миграции в нефти увеличивалось содержание парафиновых углеводородов и уменьшалось количество асфальтенов, смолистых веществ, порфиринов, неуглеводородов и тяжелых металлов (никель, ванадий, медь). При этом в нефти, вероятно, также снижалось соотношение С /С . Если все указанные изменения (или хотя бы их некоторая часть) происходят в процессе миграции нефти, то следует ожидать уменьшения ее плотности. [c.113]

    Смолисто-асфальтеновые вещества содержатся в основном в высококипящих нефтяных фракциях и относятся к классу полициклических соединений, содержащих помимо углерода и водорода кислород, серу, азот, а иногда и различные металлы. Смолисто-асфальтеновые вещества делятся на смолы и асфальтены. Смолы являются конденсированными органическими гетероооедине-ниями, в углеводородной части которых содержатся ароматические и нафтеновые кольца с короткими парафиновыми цепями. Смолы содержат также кислород, серу и азот. Асфальтены представляют собой насыщенные гетероциклические соединения, также содержащие серу, кислород и азот и часто различные металлы С , V, Ре и др.). По химическому строению и свойствам эти продукты довольно близки друг к другу. Отличаются они молекулярной массой, которая выше у асфальтенов вследствие большего числа колец в структуре молекулы. В связи с этим асфальтены при растворении в нефтепродуктах дают коллоидные растворы, а смолы — истинные. Смолисто-асфальтеновые вещества являются нежелательными компонентами нефтепродуктов и удаляются в процессе деасфальтизации (малые количества смолисто-асфальтеновых веществ могут быть удалены при селективной и адсорбционной очистках). [c.10]

    Вакуумная перегонка мазута по топливному -варианту предназначена для получения широкой масляной фракции (вакуумного газойля) с температурами выкипания 350—500 °С как сырья установки (каталитического крекинга и гидрокрекинга. Широкая масляная фракция должна быть светлой или слегка окрашенной, свободной от смолисто-асфальтеновых веществ и содержать минимальные концентрации металлов, особенно Ni и V, которые сильно влияют на активность, селективность и срок службы алюмоси-ликатных катализаторов. Никель и ванадий находятся в нефти в виде комплексов с порфнринами, выкипающих при температуре около 450°С и концентрирующихся при перегонке главным образом в асфальтенах. [c.174]

    Анализ существующих тенденций в развитии стадии подготовки гудронов для последующего их каталитического гидрооблагораживания показывает, что эта проблема решается в основном двумя, принципиаль-ально различающимися методами 1) адсорбционно-каталитическим с использованием катализатора гидродеметаллизации и адсорбентов смол и асфальтенов 2) сольвентным, т. е. обработкой гудрона селективными растворителями с удалением концентрата смолисто-асфальтеновых веществ с сопутствующими им металлами. [c.13]

    Изменения в структуре углеродного скелета свидетельствуют о реакции дегидроконденсации, преимущественно за счет гексамети-леновых колец. Особенно рельефно проявляется такой характер изменения углеродного скелета в смолисто-асфальтеновых веществах в процессах высокотемпературной переработки нефти. Этим и обусловлено различие в свойствах и строении нативных асфальтенов и асфальтенов, выделенных из тяжелых нефтяных остатков, полученных на различных стадиях высокотемпературной переработки нефти. Несмотря на аналогию в строении углеродного скелета, наблюдается резкое качественное различие в элементном составе высокомолекулярных углеводородов нефти и нефтяных смол. Первые имеют чисто углеводородную природу, т. е. полностью состоят из атомов углерода и водорода, вторые относятся к высокомолекулярным неуглеводородным компонентам нефти и, кроме углерода и водорода, содержат в своем составе О, 8, N и металлы, суммарное содержание которых может достигать 10% и более. В высокомолекулярных же углеводородах лишь в случае сернистых и высокосернистых нефтей могут присутствовать более или менее значительные примеси сераорганических соединений, близких по строению углеродного скелета к высокомолекулярным углеводородам. [c.40]

    Выше уже отмечалось, что одно из серьезных затруднений при переработке тяжелых нефтяных остатков, особенно при использовании каталитических процессов, создает большое содержание в них атомов металлов, прежде всего ванадия и никеля, которые обусловливают быстрое старение (снижение активности) катализаторов в процессах. Так как основная часть этих металлов сконцентрирована в асфальтенах и смолах, то естественно, что процессы деасфальтизации в процессах подготовки к переработке тяжелых нефтяных остатков являются одновременно в большей или меньшей степени и процессами деметаллизации этого сырья. Так, авторы процесса Добен утверждают, что процесс этот позволяет вывести из гудронов 90—95% содержащихся в них ас-< )альтенов и тем самым снизить на 50—70% концентрацию металлов в сырье. Второе направление деметаллизации тяжелых нефтяных остатков основано на термическом разложении метал-лооргапических соединений смолисто-асфальтеновых веществ с последующим поглощением освободившихся атомов металлов в порах соответствующих адсорбентов. На этом принципе базируется запатентованный пенсильванской нефтяной компанией Sun Oil процесс деметаллизации тяжелых нефтяных остатков [6]. Согласно этому патенту, тяжелые нефтяные остатки в смеси с углеводородным растворителем, служащим донором водорода, и высокопористым минеральным адсорбентом с хорошо развитой поверхностью нагреваются при температуре 400—540° С и давлении 70—200 атм. В этих условиях тормозится процесс коксования смо- [c.246]

    В сернистых и высокосернистых нефтях значительно содержание смолисто-асфальтеновых веществ и соединений металлов, в частности ванадия. Эти компоненты ухудшают качество моторных и котельных топлив и должны быть удалены при углубленной переработке остатков. Особенно нежелательно присутствие асфальтенов, которые при высокой температуре на 70% превращаются в кокс. Кроме того, в асфальтенах концентрируется основное количество солей, золообразующих компонептов, соединений тя5келых агрессивных металлов, значительная часть азот-, ки-слород- и серосодержащих соединений. [c.180]

    Смолисто-асфальтеновые вещества (САВ) представляют со бой неуглеводородные высокомолекулярные соединения нефти, которые содержат до 88 % углерода, до 10 7о водорода и до 14 % гетероатомов [223, 224]. В САВ в количестве 1—2% сконцентрированы полностью все металлы, присутствующие в нефтях [225, 226]. Невзирая на значительное разнообразие м,есторождений нефти, условий их залегания при соблюдении одинакового метода их выделения содержание углерода и водорода в асфальтенах колеблются в узких пределах 82 3 и 8,1 0,7% 225]. Этим значениям соответствует отношение Н С = 1,15 0,05 (табл. 92а). Постоянство атомного отнощения Н С — факт сам по себе удивительный, если учесть возможность большого числа перестановок фрагментов в молекулах, включающих гетероатомы. Это является наиболее веским доказательством того, что асфальтены имеют определенный состав и осаждаются в соответствии с ним, а не в зависимости от растворимости. [c.263]

    В смолисто-асфальтеновых веществах (преимущественно в асфальтенах) концентрируется наибольшее количество металлов [85], которые входят в состав сложных комплексов с высокомолекулярными полициклическими соединениями. Именно из-за присутствия тяжелых металлов из смолисто-асфальтеновых веществ невозможно получить электродный к01кс. При сжигании котельного топлива, содержащего повышенное количество тяжелых металлов, в печах интенсивно разрушается огнеупорная кладка. Наиболее агрессивным компонентом является ванадий. Пятиокись ванадия и ванадил-ванадат натрия, присутствующие в золе, являются наиболее легкоплавкими соединениями в совокупности с сернистыми веществами они образуют плотные отложения, вызывающие коррозионное разрушение металла [62]. Верхний допустимый предел содержания ванадия в [c.82]

    Почти постоянным спутником кислорода в составе смолисто-асфальтеновых веществ является сера, тогда как азот обнаруживается далеко не во всех случаях. Во всяком случае, если в нефти содержится азот, то он в главной своей массе концентрируется в смолах и асфальтенах, это положение остается справедливым и по отнощению к кислороду и, по-видимому, к металлам, которые, за исключением минеральных солей, связаны с высокомолекулярной частью нефти главным образом в форме металлоорганических соединений. Что касается серы, то она в значительном количестве находится также в высокомолекулярной углеводородной части, преимущественно в группе конденсированных ароматических структур в виде сераорганических соединений, однако, как правило, большая часть и серы концентрируется в смолисто-асфальтеновой части нефти. Последнее время в литературе по химии нефти, особенно в американской, встречается нередко термин неуглеводородные компоненты нефти, который применяют как синоним понятия — смолисто-асфальтеновая часть нефти. Хотя ЭТОТ термин и не очень точный, но он правилен в принципиальном научном смысле, так как проводит границу между этими последними соединениями и углеводородами, что выгодно отличает его от других менее выразительных определений. Термин смолисто-асфальтеновые вещества хорошо отражает состав этого класса соединений, поскольку речь идет о нефтях и природных асфальтах, так как после полного отделения углеводородной части остаются в остатке смолы (от 90 до 70%) и асфальтены (от 10 до 30%). Таким образом это определение выражает не только качественную сторону вопроса, но дает реальное количественное соотношение компонентов. Это определение сохраняет свою силу и объективность даже в том случае, если речь идет о нефтяных остатках, получаемых при воздействии высоких температур на нефть. В результате в остатке появляются продукты более глубокого уплотнения и карбонизации (так называемые карбены и карбоиды), так как и в этих тяжелых нефтяных остатках смолы и асфальтены остаются основными компонентами, тогда как карбены и карбоиды содержатся в сравнительно небольших количествах (от долей процента до нескольких процентов). Из изложенного выше ясно, что и в смысловом и в чисто терминологическом значении этот класс соединений следует называть именно смолисто-асфальтеновые, а не асфальто-смолистые вещества, как иногда называют их отдельные исследователи. [c.334]

    Металлорганические соединения ванадия, никеля, железа, меди, цинка и других металлов, содержащиеся в нефтях, в основном сосредоточены в гудроне, хотя некоторая часть их летуча и при перегонке переходит в масляные дистилляты. Содержание металлов в тяжелых дистиллятах составляет 0,01% от содержания их в остатке перегонки. Основная часть металлов связана со смолами и асфальтенами. При выделении из гудрона смолисто-асфальтеновой части 80% и более металлов выделяется вместе со смолисто-асфальтеновыми веществами. Значительная часть металлов находится в нефтях в виде металлопорфинировых комплексов. Содержание металл органических соединений в нефтях с высоким содержанием гетероатомных соединений, смол и асфальтенов значительно - на два-три порядка выше, чем в малосернистых нефтях с низким содержанием смолисто-асфальтеновых веществ. В высокосмолистых нефтях содержание ванадия достигает 2 10 %, никеля 110 %, содержание других металлов значительно ниже. [c.30]

    Поскольку сера является аналогом кислорода, их поведение при деструктивных процессах в значительной мере идентично. Кислородом наиболее богаты нефтяные смолы. Например, содержание его в смолах ромашкинской нефти превышает 7,0%. По мерс перехода к асфальтенам, карбенам и карбоидам содержание кислорода снижается. Так, отношение количества кислорода в смолах к его количеству в асфальтенах бавлинской нефти составляет 1,3, а туймазинской и ромашкинской — соответственно 2,25 и 2,6. Азотистые соединения в нефтях находятся в небольших количествах (0,01—0,2%, реже 0,4—0,7%) и концентрируются в основном в высокомолекулярных соединениях [99]. В нефтях и нефтяных остатках, не подвергнутых деструкции, основной азот составляет 25— 35% от общего содержания азота. На качество электродного кокса азотистые соединения существенного влияния не оказывают [90]. Фосфор находится не во всех нефтях и в неодинаковом количестве. Нефти с высоким содержанием серы отличаются п повышенным содержанием фосфора 75]. Гетероциклические соединения, содержащие атомы О, 8, М, Р и металлов, в основном концентрируются в наиболее тяжелой части нефтяных остатков — в асфальто-смолистых веществах. Эти соединения весьма сложны и трудно поддаются идентификации. [c.54]

    Из нефтей, добываемых в Советском Союзе, наибольшее количество тяжелых металлов содержится в высокосернистой уразаевской нефти. В нефтях, добываемых в США, самое высокое содержание металлов обнаружено в нефти Санта-Мария. Основное количество металлов в нефтях связано с асфальто-смолистыми веществами. Ванадий почти нацело связан с асфальтенами и силикагелевыми смолами, а в масляной части практически отсутствует [14, с. 13]. Никель также связан главным образом с асфальтенами и силикаге- [c.16]

    Смолы и асфальтены относятся к высокомолекулярным неуглеводородным компонентам нефти, они играют исключительно важную роль, определяя во многом ее физические свойства и химическую активность. Структурный каркас смол и асфальтенов составляют высокомолекулярные полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомами 8, О, N. Смолы -вязкие, мазеподобные вещества, асфальтены - твердые вещества, нерастворимые в низкомолекулярных углеводородах молекулярная масса смол - до 200, асфальтенов - до 2000, По содержанию смол и асфальтенов нефти подразделяются на малосмолистые (до 10% смол и асфальтенов), смолистые (10-20%), высокосмолистые (до 40%). Доля асфальтенов в малосмолистой нефти составляет до 10%, в смолистой нефти - 15-25%, в высокосмолистой - до 40%. Смолы и асфальтены содержат основную часть микроэлементов нефти, в том числе почти все металлы, с общим содержанием микроэлементов в десятые доли процента (см, гл. VI). [c.18]

    Основная часть металлов связана со смолами и асфальтенами. Значительная часть меташов находится в нефтях в виде металлопорфириновых комплексов. Содержание металлорганических соединений в нефтях с высоким содержалием гетероорганических соедашений, смол и асфальтенов значительно - на 2-3 порядка - выше, чем в малосернистых нефтях с низким содержанием асфальто-смолистых веществ. [c.89]

    Значительно слабее эмульгирующие свойства нейтральных смол, содержащихся в нефти, которые в противоположность -асфальтенам образуют не коллоидные, а истинные растворы. Чем менее асфальтеново-смолистых веществ в нефти, тем меньше их способность к образованию нефтяных эмульсий. С другой стороны, нафтеновые кислоты являются поверхностно-активными веществами, способ1 вующими понижению меж-фазного поверхностного натяжения в. нефтяных эмульсиях, а, следовательно, облегчающими эмульгирование воды в нефти. Но все же нафтеновые кислоты — слабые эмульгаторы, и только их соли с двухвалентными металлами (Са, Mg) являются более сильными эмульгаторами. Нафтеновые кислоты — это карбоновые кислоты непредельного строения, но насыщенного характера с полярными группами в молекуле в виде карбоксильных групп. Нафтеновые кислоты хорошо растворяются в нефтепродуктах и содержатся в нефтях в количестве от 0,1 до 1 %, причем наибольшее содержание нафтеновых кислот в средних фракциях нефти — соляровом и веретенном дистилляте (до 2%). [c.13]


Смотреть страницы где упоминается термин Металлы в смолисто-асфальтеновых веществах: [c.39]    [c.434]    [c.16]    [c.293]    [c.434]    [c.17]    [c.236]    [c.50]   
Смотреть главы в:

Химия высокомолекулярных соединений нефти -> Металлы в смолисто-асфальтеновых веществах




ПОИСК





Смотрите так же термины и статьи:

Смолистость



© 2025 chem21.info Реклама на сайте