Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебра определение в сурьме

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Определение серебра в сурьме. При определении используют дитизон [534]. [c.185]

    Ход анализа. Навеску 2—5 г материала, содержащего теллур, сплавляют с 5-кратным количеством перекиси натрия в никелевом тигле. По охлаждении выщелачивают водой, добавляют соляную кислоту и кипятят для удаления выделившегося хлора. Затем восстанавливают теллур (присутствующий в растворе в виде шестивалентного) до элементарного гипофосфитом кальция. При этом в осадок выпадают вместе с теллуром селен, золото и мышьяк. Осадок отфильтровывают, промывают горячей разбавленной соляной кислотой, переносят в стакан и кипятят с концентрированной азотной кислотой до полного растворения всех металлов (кроме золота) добавляют 20 мл 18 н. серной кислоты, выпаривают до дыма,. охлаждают, разбавляют водой, добавляют отмеренный избыток раствора бихромата калия (I мг хрома в I м/1), дают постоять 30 мин и титруют избыток бихромата солью Мора при -1-1,15 в (Нас. КЭ) с платиновым электродом. Определению теллура не мешают селен, медь, свинец, серебро, висмут, сурьма, мышьяк и олово. [c.314]

    Железо (П1), ртуть (II), серебро, висмут, сурьма (III), свинец, золото (III), хлороплатинаты и метаванадаты мешают определению, так как выпадают в осадок. Влияния их устраняют соответствующим разбавлением. [c.135]

    И магния. Оксалатный метод, который применяется обычно для определения кальция в присутствии магния, неприменим, если кальция очень мало, а магния много. Фосфатный метод определения магния не дает хороших результатов в присутствии большого количества оксалатов. Висмутатный метод определения марганца не оставляет желать лучшего, если раствор не содержит кобальта или хрома. Определение свинца в виде его сульфата дает вполне удовлетворительные результаты, если это определение не пытаются проводить, когда присутствуют барий, кальций, серебро или сурьма. [c.81]

    Чувствительность метода составляет 3 10 % при точности 2,1%. Метод совпадений был применен также для определения сурьмы и серебра в висмуте [396]. [c.290]

    Метод основан на нефелометрическом определении хлора по реакции образования хлорида серебра. Определение проводят без отделения сурьмы, которую удерживают в растворе в виде фторидного комплекса. Для оценки степени помутнения раствора используется прибор, основанный на эффекте Тиндаля. [c.240]

    Определение сурьмы в хлориде калия. Растворяют 3 г хлорида калия ъ 10 мл 0,6 н. соляной кислоты, добавляют 4 мл нитрата серебра, содержащего 0,01 мг-ион kg+ в 1 мл. Выпавший осадок отфильтровывают (если анализируемый продукт не содержит иода, эту операцию можно исключить). К фильтрату прибавляют 200 мг солянокислого гидразина и осторожно кипятят 10 мин (кипение должно быть слабым, едва заметным). Затем раствор охлаждают, добавляют воду до 13 жл и 2 мл 0,15%-ного раствора родамина С. Раствор переносят в электролизер и удаляют кислород током инертного газа. Устанавливают потенциал +0,8 в и регистрируют катодную поляризационную кривую в интервале потенциалов 0,8— О в. Измеряют максимальный ток ( 1) в области потенциалов от + 0,5 до +0,35 в. Затем проводят электролиз перемешиваемого раствора в течение 30 мин при потенциале +0,8 в. При этом сурьма концентрируется на электроде в виде соединения с родамином С. Выключают мешалку и через 10—15 сек регистрируют катодную поляризационную кривую растворения осадка в области потенциа- [c.101]


    Проведя химический анализ продукта накопления селена (IV) в присутствии меди, мы установили, что на стационарном электроде выделяется селенид меди, а на капающем электроде — селенид ртути. Повышение чувствительности определения селена может быть объяснено увеличением константы электролитического накопления селена в присутствии меди (примерно в 3 раза) и повышенной скоростью электродной реакции селенида меди по сравнению с селенидом ртути. Ионы серебра, ртути, сурьмы, висмута, кадмия, цинка не оказывают влияния на высоту пика в инверсионной вектор-полярографии селенита. Подобного эффекта для теллура (IV) мы не наблюдали. [c.170]

    Определение сурьмы. Образование амальгамы сурьмы по аналогии с реакциями, известными для висмута и серебра [4, 5], можно описать следующим уравнением  [c.247]

    Стибиды определенного состава образуются в сплавах сурьмы с никелем, а неопределенного — в силавах сурьмы и серебром и оловом. В сплавах сурьмы с галлием, индием и таллием получаются стибиды с полупроводниковыми свойствами. С активными металлами, а также с таллием образуются висмутиды определенного состава. [c.369]

    Свинцовые концентраты, основнЫ М компонентом которых является сульфид свинца РЬ5, содержат примеси меди, цинка, сурь мы, мышьяка, висмута, серебра, золота и других металлов. При восстановительной шахтной плавке эти металлы переходят в свинец и загрязняют его. Черновой свинец (веркблей) подвергают огневому рафинированию, удаляя примеси в определенной последовательности. Сначала удаляют медь ликвацией серой, затем сурьму и мышьяк, а также олово путем обработки свинца расплавом едкого натра и селитры (способ Гарриса). Серебро удаляют с помощью цинка, висмут — с помощью магния и кальция В ряде случаев, когда черновой свинец содержит заметные количества висмута и сурьмы, а также серебра, может оказаться целесообразным его электролитическое рафинирование, тем более, что конечным продуктом является свинец высокой чистоты. [c.261]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    Схема анализа. Приступая к анализу неизвестного вещества или к определению составных частей сложной смеси нескольких веществ, химик-аналитик должен обстоятельно продумать ход анализа. Метод, дающий вполне удовлетворительные результаты при определении того или иного вещества в одном случае, может оказаться совершенно неудовлетворительным в другом. Особенно сильно искажаются результаты определений при анализе сложных смесей. Примеры несостоятельности хорошо известных методов весьма многочисленны. Например, метод определения кремневой кислоты путем выпаривания досуха солянокислого раствора анализируемого вещества и последующего обезвоживания сухого остатка дает хорошие результаты, если кремневой кислоте не сопутствуют примеси, выпадающие вместе с нею в осадок. Но этот метод нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, титан, висмут и др. Осаждением смесью едкого натра и карбоната натрия можно хорошо отделить ионы алюминия от houob железа и кальция, выпадающих в осадок е виде Ре(ОН)з и СаСОд. Но тот же метод непригоден для отделения ионов алюминия от ионов железа и цинка. Оксалатный метод, который обычно применяют для определения кальция в присутствии магния, неприменим, если ионы кальция содержатся в незначительном количестве, а ионы магния—в большом количестве. Определение свинца в виде сульфата дает вполне хорошие результаты, если это определение проводят в отсутствие ионов бария, кальция, серебра и сурьмы. [c.287]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]


    Железо (111), ртуть (II), серебро, висмут, сурьма (III), свинец, золото (III), хлорплатинаты и метаванадаты мешают определению, так как выпадают в осадок. Их влияние устраняется соответствующим разбавлением. Медь (И) снижает результаты вследствие вызываемого ею каталитического распада диазотированной сульфаниловой кислоты. В присутствии меди пробу также разбавляют. [c.562]

    Показана возможность определения 0,34—1,4 мг 5Ь" в80мл раствора 0,02 М по Се2(504)з и 2М по H IO4 0,7 - 1,5 мг Sb на фоне 0,02 М по 62(804)3 и 1—2 М по H2SO4 в присутствии хлорида калия ( 0,01 М) при комнатной температуре электрогенерированным церием (IV). Определению сурьмы не мешают десятикратные количества солей висмута(П1), меди(П), каль-ция(П), магния(П), свинца(П) и ртути(П), а также эквивалентные количества серебра(I) [575]. [c.72]

    Смин свинца составляет Ы0 %, а индия и сурьмы — 2-10- %. Определению свинца и индия в плутонии не мешают висмут, таллий, медь, железо, цинк, уран и серебро, а также галлий, марганец и ванадий, не дающие пиков на ДИП в по лярографируемом растворе. Определению сурьмы мешает висмут при Св1/Сзь 0,3 и таллий при Ст/Сзь 1. Определению индия мешают относительно высокие концентрации кадмия (Д п = 0,15 В). На ДИП растворов диэтилдитиокарбаминатов свинца, индия, а также кобальта, никеля и кадмия наблюдаются адсорбционные пики при более положитель- [c.204]

    Определению 0,01 мкг кобальта не мешают 500-кратный избыток кальция, цинка, хрома, серебра, вольфрама, сурьмы, бериллия, германия, титана, галлия, молибдена, ванадия, e лена, кадмия, стронция, свинца, меди, магния, бария. Замедляют реакцию вследствие образования прочных комплексов с салицилфлуороиом 5 мкг железа, лантана, алюминия, циркония, никеля, марганца, тория. [c.210]

    В разбавленных кислых растворах сурьма (III) восстанавливает фосфорномолибденовольфрамовую кислоту, образуя синюю окраску. Этим способом можно определить 0,05 мг сурьмы в 100 мл раствора. Для восстановления сурьмы до трехвалентного состояния пригодна сернистая кислота. Этот метод был применен для определения сурьмы в меди после выделения сурьмы путем соосаждения с двуокисью марганца, которая образуется, если перманганат добавляют к кипящему раствору, содержащему сульфат марганца. Установлено, что определению не мешают серебро, железо (II), никель, кобальт, мышьяк и висмут. [c.469]

    Определение алюминия, цинка, железа, никеля, меди, серебра, свинца, сурьмы, золота и мышьяка в борсиликатном стекле проводят спектральным методом после удаления вещества-основы в виде борнометилового эфира и фтористого кремния [1]. [c.67]

    Большинство нз известных колориметрических методов определения сурьмы не удовлетворяет этим условиям. Йодид-пириди-новый метод мало чувствителен (1 мкг мл) и мало избирателен. Определению сурьмы этим методом мешают висмут, свинец, ртуть, серебро, железо и хлориды [12]. [c.52]

    Весовые методы применяются для определения хлора, присутствующего в виде хлоридов. Сведения о весовом определении гипохлоритов, хлоритов, хлоратов и свободного хлора в литературе отсутствуют. Важнейшим методом весового оаределения хлорид-ионов является выделение и взвешивание осадка хлорида серебра. Определению мешают йодиды, бромиды, цианиды, роданиды, которые также осаждаются нитратом серебра, а также хлориды олова и сурьмы, подвергающиеся гидролизу в нейтральных или слабокислых растворах /2/. [c.9]

    Примеры несостоятельности хорошо известных методов при некоторых условиях весьма многочисленны. Метод определения кремневой кислоты выпариванием досуха солянокислого раствора и обезвоживанием сухого остатка дает хорошие результаты в обычном случае, но его нельзя применять в присутствии таких элементов, как бор, фтор, сурьма или висмут. Осаждением смесью едкого натра и углекислого натрия можно очень хорошо отделить алюминий от железа и кальция, но не от железа и магния. Оксалатный метод, который применяется обычно для определения кальция в присутствии магния, ненрименим, если кальция очень мало, а магния много. Фосфатный метод определения магния не дает хороших результатов в присутствии большого количества оксалатов. Висмутатный метод определения марганца не оставляет желать лучшего, если раствор не содержит кобальта илн хрома. Определение свинца в виде его сульфата дает вполне удовлетворительные результаты, если это определение не пытаются проводить, когда присутствуют барий, кальций, серебро или сурьма. [c.75]

    Лабораторная методика спектрального определения микропримесей алюминия, висмута, железа, золота, кальция, кадмия. кобальта, магния, марганца. меди, мышьяка, никеля, олова, серебра, свинда, сурьмы. титана, хрома, цинка по норме 1.10 - 1Л0" %. [c.81]

    I) Лабораторная методика типового химико-спектрального определения микроцримесей алшиния, ванадия, висмута, железа, кобальта, марганца, меди, молибдена, никеля, олова, свинца, титана, серебра, хрома, сурьмы,ин-дия, галлия, цинка в углекислых, азотнокислых, хлористых солях [c.56]

    Определение сурьмы в покрытии, Нааеска сплааа серебро — сурьма (2—3 г) растворяется в конической колбе на 250 мл в смеси кислот 9 объемных частей (плотность [c.90]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    Взаимодействие с элементарными веществами. Со всеми галогенами сурьма и висмут энергично взаимодействуют с образованием тригалидов, а при избытке фтора или хлора сурьма образует соответствующие пентагалиды. На воздухе при обычных температурах сурьма и висмут вполне устойчивы. При температуре порядка 600° С они сгорают с образованием соответствующих оксидов типа МегОз. При сплавлении с серой, селеном и теллуром образуются соответствующие соединения, в которых сурьма и висмут трехвалентны. С азотом сурьма и висмут не взаимодействуют. С большинством металлов сурьма и висмут дают сплавы, причем определенные соединения образуются преимущественно с активными металлами (а сурьма и с такими металлами, как никель, серебро, олово). [c.209]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]


Смотреть страницы где упоминается термин Серебра определение в сурьме: [c.328]    [c.195]    [c.381]    [c.212]    [c.299]    [c.369]    [c.246]    [c.361]    [c.367]    [c.33]    [c.563]   
Аналитическая химия сурьмы (1978) -- [ c.165 , c.171 , c.173 ]




ПОИСК







© 2024 chem21.info Реклама на сайте