Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок олигомер

    Для Э. X. используют макропористые неорг. или полимерные сорбенты. Для Э. х. полярных полимеров неорг. сорбенты (силикагели и макропористые стекла) модифицируют кремнийорг. радикалами, а дги Э. х. гидрофильных полимеров -гидрофильными фуппами. Среди полимерных сорбентов наиб. распространены стирол-дивинилбензольные (для Э.х. высокополимеров и олигомеров). Для гель-фильтрации биополимеров, превде всего белков, используют гидрофильные полимерные сорбенты (сефадексы - декстраны с поперечными сшивками, а также полиакриламидные гели) или модифицированные полисахаридами макропористые силикагели. [c.411]


    Влияние на адсорбцию полимеров химии поверхности адсорбента и природы растворителя. Влияние на адсорбцию полимеров размеров пор адсорбента. Адсорбция из растворов и адсорбционная хроматография олигомеров. Адсорбционная и ситовая хроматография полимеров. Адсорбция и хроматография белков и вирусов. [c.332]

    Больщинство глобулярных белков—олигомеры (т.е. состоят из двух или более идентичных или разных полипептидных цепей). Примером глобулярных белков могут служить гемоглобин (рис. 1.36) и иммуноглобулин (рис. 1.37). Четвертичная структура подобных белков определяется тем, как взаимодействуют между собой в олигомерной структуре отдельные свернутые полипептидные цепи. В гемоглобине, например, благодаря взаимодействию аминокислот, входящих в состав а-спиралей и Р-слоев, образуется а(5-димер, а димеры в свою [c.62]

    Главный акцент сделан на характеристику структуры белков и нуклеиновых кислот — прежде всего в плане описания их химических свойств и методов химического синтеза. Хотелось бы подчеркнуть, что рассмотрение проводится главным образом на уровне первичной структуры, когда детально, шаг за шагом, ана-лизируется множественная реакционноспособность этих биополимеров, объясняются их свойства на основе химических превращений функциональных группировок и их ансамблей. Что же касается проблемы химического синтеза, то она изложена весьма полно и отражает сложившиеся сейчас подходы к искусственному получению как олигомеров, так и достаточно крупных биополимеров этого типа. [c.6]

    Подобрать концентрацию фермента, при которой скорость реакции была бы пропорциональна количеству добавленного белка-катализатора. Если подобная зависимость не наблюдается, это может указывать на присутствие в препарате фермента ингибитора либо активатора, а также на возможную диссоциацию фермента при разведении на субъединицы, обладающие иными кинетическими свойствами, чем олигомер. [c.207]

    Иммобилизованные ферменты могут быть использованы в качестве иммуносорбентов для выделения из антисыворотки специфических антител на эти ферменты. Эффективность адсорбции антител, количество адсорбированных антител и условия их элюции зависят от свойств иммуносорбента от количества связанного с матрицей белка-антигена, прочности связи антиген—носитель, конформации антигена и числа вовлеченных в ковалентное связывание субъединиц антигенов-олигомеров. [c.304]

    Ранее мы рассмотрели способы, при помощи которых белковые субъединицы могут соединяться друг с другом, образуя замкнутые олигомеры и длинные опирали. Другой чрезвычайно важный способ упаковки белков и липидов приводит к образованию пластинчатых структур, или мембран [1—10], которые с молекулярной точки зрения можно рассматривать как практически безграничные двумерные поверхности. Эта глава посвящена строению, химическим свойствам и функциям биологических мембран, а также клеточных стенок бактерий, грибов и растений. [c.337]


    Олигомеры в отличие от мономеров могут диссоциировать. Белки обычно подразделяют на мономеры и олигомеры. Согласно определению Клотца и сотр. [81], белок представляет собой мономер , если он состоит только из одной полипептидной цепи или если он построен из нескольких цепей, связанных ковалентно (например, Дисульфидными мостиками). По этой номенклатуре такие белки, как инсулин, а-химотрипсин и иммуноглобулины, представляющие собой образования из валентно-связанных цепей, должны быть отнесены к мономерам. Отличительная особенность олигомерных белков состоит в том, что они построены из так называемых субъединиц, т. е. из связанных невалентными силами более мелких образований (рис. 4.1 и 5.18). Как указывалось выше, мономеры могут состоять из нескольких функциональных доменов пли из еще большего числа структурных доменов. Это относится и к субъединицам Олигомеров, хотя субъединица часто эквивалентна функциональному домену. [c.61]

    Образование олигомеров понижает осмотическое давление во внутриклеточном пространстве. Кроме того, отношение поверхность/объем для олигомера меньше, чем для мономера. Поэтому олигомер связывает меньше молекул воды и вносит меньший вклад в вязкость внутри клетки. Наконец, олигомерные белки обычно кооперированы и хорошо регулируются эффекторами. Хорошо известным примером физиологической оптимальности этих свойств является тетрамерный гемоглобин эритроцитов млекопитающих [85]. Однако такие свойства существенны и для менее специализированных клеток, содержащих самые разнообразные белки. [c.64]

    Олигомеры проще, чем одиночные гигантские полипептидные цепи. Олигомерные белки имеют некоторое принципиальное преимущество перед гигантскими полипептидными цепями, состоящими из отдельных функциональных доменов. По-видимому, этим объясняется тот факт, что большинство крупных белков олигомерны [81]. [c.65]

    Можно возразить, что это преимущество невелико, поскольку введение одной дефектной субъединицы в тетрамерный белок может подавить функцию всего олигомера. Но обычно этого не происходит олигомерные белки находятся в динамическом состоянии диссоциации и реассоциации субъединицы обмениваются между олигомерами и дефектные устраняются. С помощью такого диспропорционирования могут быть исправлены природные дефекты и химические изъяны индивидуальных субъединиц [81]. [c.66]

    Термодинамика ассоциации сходна с термодинамикой свертывания. В результате ассоциации контактные поверхности субъединиц оказываются скрытыми. Это может быть представлено как перенос поверхности (атомов) из воды во внутреннюю часть белка. Параллельно происходит понижение энтропии системы, поскольку ассоциированные мономеры (олигомеры) характеризуются более высокой упорядоченностью, чем свободные. Следовательно, свободная энергия ассоциации имеет вид  [c.123]

    Плазмодий миксомицетов выполняет активные колебательные движения протоплазмы. Он содержит актин и миозин, весьма сходные с мышечными. Миозин плазмодия, однако, не образует толстых нитей, но лишь малые олигомеры. Тем не мепее этот миозин взаимодействует с актином плазмодия. В плазмодии обнаружены тонкие пучки нитей, построенные из актина и миозина. Эти пучки появляются и исчезают, следуя за фазами колебаний. Ток протоплазмы регулируется ионами Са , по-видимому, с участием еще неизвестных регуляторных белков. Можно думать о сходстве движения протоплазмы с мышечным, однако отсутствие толстых нитей означает отсутствие тождества. [c.414]

    Четвертичная структура белков — способ укладки в пространстве нескольких полипептидных цепей, обладающих первичной, вторичной и третичной структурами, с формированием единого макромоле-кулярного образования для выполнения определенной функции. Четвертичной структурой обладают белки с молекулярной массой более 50 ООО Да. Для обозначения используют следующие термины протомер — отдельная полипептвдная цепь в третичной структуре субъединица — протомер или объединение нескольких протомеров, способных выполнять часть функции белка олигомер (мультимер) — сочетание протомеров или субъединиц в четвертичной структуре белка, несущих полную функциональную активность белка. Протомеры связаны в мультимерном белке слабыми связями (водородные, элек- [c.37]

    Исследование показало, что нитрогеназа является типичным металлоферментом и содержит железо и молибден (рис. 61), Она состоит из двух белков-олигомеров Ре-протеина и Мо-Ре-протеина. Для работы нитрогеназы нужны энергия в виде АТФ, поток электронов и водород. Источники энергии и доноры электронов у разных азотфиксаторов различные у фотосинтетиков — фотосинтез, у анаэробов — брожение, у аэро--бов—дыхание, [c.338]

    Конденсированные фосфаты. Олигомеры циклофосфатов можно разделить хроматографически вплоть до октаметафосфата. Один из гексаметафосфатов был выделен в препаративных количествах. Полимерные метафосфорные кислоты — это сильные или средней силы кислоты. Например,, для тетраметафосфорной кислоты (НРОз)4 рЯ1 = 2,6 р/(2=6,4,, р/(з =8,8,. р/С4=И,4- Соли этих кислот хорошо растворимы в воде. Осаждение происходит лишь после их гидролиза до монофосфатов, который, ускоряется в присутствии разбавленных кислот и при нагревании. При образовании перлов фосфорных солей связь Р—О—Р разрывается благодаря протеканию реакций с оксидами металлов. В предельном случае процесс приводит к образованию монофосфатов, причем получающиеся смешанные соли имеют характерную окраску. Считавшаяся ранее специфичной для метафосфатов реакция свертывания яичного белка идет лишь в присутствии растворов изополифосфатов с большим размером цепи. Олиго-фосфатами с п 15 раствор яичного белка не сворачивается. [c.550]


    Крупные белки плазмы крови могут быть либо олигомерами, либо мономерами. Однако олигомеры способны к диссоциации, а субъединицы могут фильтроваться тем же путем, что и мелкие мономеры. Это видно на примере (3 2-микроглобулина (рис. 4.2, б), небольшой растворимой субъединицы белков НЬ-А (которые [c.63]

    Число атомов в молекуле не ограничено. Молекулы газов могут содержать один атом (например, в веществе — аргоне, Аг), два (О2) может быть небольшое число атомов, измеряемое десятками (Зе). Молекулы гемоглобина, белка ответственного за перенос кислорода из легких к тканям тела, имеют эмпирическую формулу ( 738Hll65O208N20зS2Fe) и содержат тысячи атомов. Очень большое количество атомов часто содержат молекулы твердых веществ. Так, алмаз, практически представляет молекулу-кристалл, с числом атомов углерода, соизмеримым со значением постоянной Авогадро. Принято молекулы с числом атомов приблизительно до 100 и содержащих повторяющиеся группировки атомов условно называть олигомерами, а более крупные относят к полимерным молекулам или, просто, полимерам. [c.98]

    НОМ полнмерной молекулы. Число звеньев называется степенью полимеризации (п). П. с молекулярной массой М = 10 —10 называются высокополи-мерами, а П. с низкой молекулярной массой — олигомерами. П., цепи которых построены из одинаковых звеньев, называются гомополимерами, а из разнородных — сополимерами. П. бывают линейными, разветвленными и пространственными. Если основная цепь состоит из двух мономеров, а боковые ответвления — из других, то такие разветвленные П. называются привитыми сополимерами. Наряду с карбоцепными П., содержащими в основной цепи только атомы углерода, встречаются сополимеры, основные цепи которых, кроме углерода, содержат атомы кислорода, азота, серы и др. Неорганические П. не содержат атомов углерода. Природные П.— белки, целлюлоза, крахмал, натуральный каучук и др. П.—пластические массы, синтетические каучули, волокна, лаки, пленки, клеи и др. П. широко используют для создания различных конструкционных полимерных материалов, волокон, резин, пластмасс, стеклопластиков, покрытий и др. Пластмассы применяют как заменители цветных металлов в электропромышленности, в машиностроении, а также в строительстве, сельском хозяйстве, химической и пищевой промышленности, в быту. [c.198]

    Какие же другие функции кроме нейтрализации зарядов ДНК выполняют гистоны Первоначально считали, что эти белки могут играть, роль репрессоров генов аналогично тому, как это происходит у бактерий. Однако экспериментального подтверждения это предположение не получило. Гистоны, по-видимому, образуют своеобразный комплекс с нитями ДНК. Сравнительно недавно с помощью электронного микроскопа были получены микрофотографии, на которых видно, что хрома-типовые волокна имеют регулярно повторяющееся строение, напоминая нитки бус. Диаметр бусинки (или у-телец, или нуклеосом) составляет 7—10 нм, а длина свободной нитки между бусами равна 2—14 нм. (рис. 15-35] [290—294]. Содержание ДНК в бусинках велико. Данные, полученные методом дифракции нейтронов, свидетельствуют о том, что в у-частицах нить ДНК намотана вокруг гистонового олигомера-(рис. 15-36) [295]. Гистоны Н2а, Н2в, НЗ и Н4 обнаруживаются почти в одинаковом количестве — на каждые 100 пар оснований в ДНК приходится по одной молекуле каждого из гистонов. В растворе был получен октамер, содержащий по две субъединицы гистонов каждого типа [296]. [c.302]

    Термин М.с. обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др, полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Такой М.с. реализуется при условии хим. и стерич. соответствия (комплемеитарности) мономеров и растущей цепи, с одной стороны, и матрицы-с другой при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами-при матричной поликонденсации), связанными с матрицей. [c.667]

    При гель-фильтрации белков необходимо принимать меры для предотвращения их адсорбции на сорбенте и не допускать их денатурации. В отличие от Э. х. синтетич. полиметов и олигомеров, используемой гл. обр. в аналит. целях, гель-филь-трация белков - один из важнейших способов их выделения и очистки. Разрешение белков по М при гель-фильтрации ниже, чем при гель-проникающей з матографии синтетич. полимеров, т.к. для белков а для габкоцепных [c.413]

    Малые строительные блоки, мономеры, в клетке соединяются в гигантские макромолекулы, или полимеры, в которых мономерные звенья связаны прочными ковалентными связями. Одни полимеры состоят всего лишь из нескольких мономерных звеньев (олигомер), другие из сотен, тысяч и даже миллионов. Типичный белок содержит от 100 до нескольких сотен аминокислот, молекула ДНК Е. oli состоит из 4-10 пар нуклеотидов, а сильно разветвленная молекула крахмала содержит свыше миллиона сахарных звеньев. Одни молекулы биополимеров представляют собой линейные цепочки, другие — разветвленные.. Иногда цепи полимера скручиваются с образованием жесткой цилинд-рической спирали, стабилизированной большим числом слабых вторичных связей. Но, как правило, такие структуры имеют значительно более сложную и нерегулярную конформацию. Довольно часто цепи полимера прилегают одна к другой, образуя сетчатые структуры, волокна,, мембраны. В отдельных случаях (например, в коллагене соединительной ткани) молекулы белка прошиты в поперечном направлении сильными ковалентными связями. Однако обычно макромолекулы в клетках связаны друг с другом более слабыми электростатическими и вандерваальсовыми силами. [c.67]

    С прикладной точки зрения эти физико-химические характеристики, которые весьма специфичны и очень четко отличают их от белков зерновых культур, придают им многие функциональные свойства, обусловливающие пригодность для агропищевой отрасли. Изучение характера взаимодействий субъединиц между собой или олигомеров, которые они образуют в зависимости от свойств среды (pH, ионная сила), должно обеспечить более выгодное использование этих свойств. [c.168]

    Внеэпителиальные белки—небольшие мономеры. Вне организма Судьба отдельной молекулы (например, пищеварительного белка или лизоцима человека) очень неопределенна. Поэтому целесообразно образовать из выделяемого на эти белки вещества как можно больше независимых единиц, чем и объясняются их малые размеры. Кроме того, этп белки мономерны, поскольку олигомеры склонны к диссоциации при растворении. [c.63]

    Внутриклеточные белки, как правило, — олигомеры. Рассмотрим теперь внутриклеточные белки, которые представляют собой ире-имущественно олигомеры. Небольшие мономерные белки, как, например, изоферменты аденилаткиназы М = 22 ООО) [83, 84], встречаются в клетках редко. Олигомеры в этом случае имеют ряд преимуществ перед крупными одиночными полииептидными цепями (разд. 4.1). В отличие от плазмы крови в клетках олигомеры весьма эффективны, поскольку клеточная мембрана непроницаема даже для небольших белков, так что потери олигомеров в форме их субъединиц исключены. [c.64]

    Хотя из всего набора спектроскопических методов — инфракрасной и рамановской спектроскопии, ДОВ, КД, ЯМР, флуоресцентной и ЭПР-спектроскопии, часто лишь одна (лучше остальных) подходит для определенного конформационного исследования, все же полученная с ее помощью информация почти неизменно успешно дополняется данными, полученными с использованием другого метода. В предыдущих разделах неоднократно указывалось на множество примеров применения более чем одного спектроскопического метода примерами этого из области олигопептидов могут служить исследования защищенных олигомеров -аланина (ИК и КД) [15, 70], аналогов -валина и -норвалина [70] и грамицидина А [56] (ЯМР и КД). Хороший растворитель для олигопептидов, полипептидов и белков, гексафторизопропанол, используется для сравнительных исследований с применением ИК, ДОВ и КД [c.443]

    Для исследования расположения белков в мембранах, а также расположения олигомеров в ферментах, состоящих из многих субъединиц, был разработан ряд методов мечения [24,30] и сшивки [31—34]. Так, для сшивания молекул белков в мембране эритроцитов использовали окисление их внутренних меркапто-групп [30] после выделения комплекса образовавшиеся связи могут быть разрушены восстановительным расщеплением, что позволяло идентифицировать составляющие белки. Альтернативный подход [32,33] заключался в биосинтетическом введении в биологические мембраны жирных кислот, несущих светочувствительную группу сшивка производного жирной кислоты и смежного белка индуцировалась фотолизом. Сходные методы применяли для сшнвки белков [34] в мембранах эритроцитов. [c.124]

    Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладаюгцих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярно-го образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не главновалентными связями, а нековалентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чагце всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входягцих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чагце построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами —от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых а- и двух 3-полипептидных цепей, т.е. представляет собой тетрамер. На рис. 1.23 представлена структура молекулы гемоглобина, а на рис. 1.24 хорошо видно, что молекула гемоглобина содержит четыре полипептидные цепи, [c.68]

    Некоторые исследователи склонны рассматривать, и не без основания, существование пятого уровня структурной организации белков. Речь идет о полифункциональных макромолекулярных комплексах, или ассоциатах из разных ферментов, получивших название метаболических олигомеров, или метаболонов, и катализирующих весь путь превращений субстрата (синте-тазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь). [c.71]

    Другая модель — модель косвенной кооперативности — была предложена Моно, Уайменом и Шанжё (модель МУШ). Молекула белка моделируется олигомером, состоящим из двух или [c.201]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Другая модель косвенной кооперативности, предназначенная для трактовки свойств АСФ, была предложена Моно, Уайманом и Шанжё (модель МУШ [65]). Молекула белка представляет собой олигомер, состоящий из двух или большего числа идентичных субъединиц — протомеров, занимающих эквивалентные пространственные положения. Тем самым, молекула обладает элементами симметрии. Она может быть построена изологично или гетерологично в последнем случае возможна неограниченная длина олигомера (рис. 7.29). Каждому лиганду (субстрату или АСЭ) отвечает один активный центр протомера. [c.457]

    Т. е. для биополимеров, не имеющих регулярной структуры, необходимо установление общего плана построения молекул сюда относятся как сведения об архитектонике молекулы (число и относительное расположение разветвлений, природа и размеры внутренних и внешних цепей), так и данные о последовательности моносахаридов на каждом конкретном участке молекулы полимера. Нельзя не отметить, что задача установления общего плана построения полимерной молекулы при выяснении первичной структуры белков и нуклеиновых кислот (биополимеров с единственным типом межмономерной связи) не ставится и является характерной для полисахаридов, приобретая особое значение в случае смешанных углеводсодержащих биополимеров. В настоящее время для решения этой задачи применяют фрагментацию полисахаридной цепи на олигомеры посредством частичного расщепления гликозидных связей. Методы установления строения низших олигосахаридов, получаемых при такой фрагментации, в настоящее время разработаны достаточно хорошо и применимы к небольшим количествам вещества, но они весьма трудоемки. Поэтому требует внимания разработка прямых физико-химических методов идентификации и установления строения олигосахаридов. [c.633]

    Но есть среди ВМС и такие вещества, которые построены из большого числа сравнительно простых, но многократно повторяющихся звеньев. Звенья могут быть как одинаковые, так и разные, но набор их всегда невелик. Звенья образуются из небольших относительно простых молекул, которые называются мономерами. Соединения, состоящие из небольшого числа звеньев, называются олигомерами (от греч. oligos - малый), а если число звеньев составляет несколько тысяч или еще больше, то соединения такого типа называются полимерами. Из уже рассмотренных выше органических соединений к высокомолекулярным относятся зтлеводы крахмал и клетчатка, построенные из одинаковых звеньев (см. разд. 33.6), и белки, построенные из ограниченного набора аминокислот (см. разд. 34.2). [c.435]


Смотреть страницы где упоминается термин Белок олигомер: [c.206]    [c.84]    [c.611]    [c.271]    [c.65]    [c.12]    [c.204]    [c.65]   
Принципы структурной организации белков (1982) -- [ c.61 ]

Принципы структурной организации белков (1982) -- [ c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Олигомеры



© 2025 chem21.info Реклама на сайте