Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ азеотропных смесей

    Для определения воды, за исключением более старых методов высушивания в сушильном шкафу, наиболее широко применяется метод дистилляции. Этот метод нашел применение в пищевой и нефтеперерабатывающей промышленности для анализа твердых, пастообразных и других относительно малолетучих продуктов. Многие из этих методик приняты во всем мире в качестве стандартных, так как условия перегонки и требования к аппаратуре могут быть описаны достаточно четко и однозначно. Эти методики включают, как правило, отгонку воды с последующим разделением фаз. Обычно используют дистилляцию в присутствии углеводородов или органических галогенидов, которые или образуют азео-тропные смеси с водой с минимальной температурой кипения, или кипят выше 100 °С и поэтому могут служить переносчиками воды. Смесь двух или нескольких компонентов называют азеотропной в том случае, если она кипит при постоянной температуре, соответствующей данному давлению, и в процессе перегонки не изменяет своего состава. Азеотропная смесь ведет себя при перегонке как индивидуальное вещество до тех пор, пока не будет исчерпан один из входящих в ее состав компонентов (в данном случае вода). В большинстве методик анализа, использующих дистилляцию, анализируемый образец диспергируют в относительно большом объеме переносчика воды. Далее нагревают смесь до начала кипения и конденсируют образующийся пар. Конденсат собирают в градуированный приемник (конденсат разделяется на две фазы) и измеряют объем водной фазы. Азеотропные смеси с минимальной температурой кипения позволяют значительно снизить температуру, требуемую для удаления влаги, и, таким образом, осуществить определение воды в более мягких условиях, чем при обычной сушке в сушильном шкафу при атмосферном давлении. Физико-химические принципы дистилляции рассмотрены в работе [89]. [c.236]


    Технологический режим колонны предварительной ректификации в значительной мере определяется также наличием в метаноле-сырце углеводородов. Декан — последний член гомологического ряда парафиновых углеводородов нормального строения, образующих с метанолом азеотропную смесь. Поэтому углеводороды Сз—Сд можно отнести к головным [124] примесям колонны, которые, отделяясь вместе с остальными легколетучими примесями, выводятся с предгоном. Углеводороды Си и выше, имея температуру кипения выше (см. табл. 5.2), чем у воды, и не образуя с водой азеотропной Смеси, выводятся в основном из куба колонны основной ректификации вместе с реакционной водой. Таким образом, в метанол-ректификат могут попасть углеводороды от Сэ до С13. Для анализа распределения углеводородов по колоннам ректификации авторы считают достаточным [125] из каждой группы с одинаковой молекулярной [c.160]

    Предварительный анализ свойств компонентов и смеси уже позволяет выделить группы альтернативных способов получения чистых компонентов, однако в большей степени полезен при выполнении анализа фазового и химического равновесия, так как сужает область экспериментальных и расчетных исследований. Например, если смесь относится к гомогенным без азеотропов с большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако, очевидно, особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, вакуумная ректификация или под давлением, мембраны, кристаллизация и т. д.). Ясно, что выбор оптимального способа разделения должен производиться на основе более полного расчетного и, возможно, экспериментального исследования. [c.97]

    Активацию катионита проводят следующим образом. К смеси высушенного сульфокатионита дауэкс 50w Х 4 и хлористого этилена добавляют при перемешивании раствор хлорсульфоновой кислоты в хлористом этилене. Смесь охлаждают, поддерживая температуру около 15 °С. После того как реакция в основном закончится, охлаждение прекращают и температуру повышают до 26 °С. Катионит отфильтровывают, промывают хлористым этиленом и суспендируют в 37%-НОЙ соляной кислоте при 20 °С. К этой смеси добавляют небольшими порциями в течение 2 ч гранулированное олово, после чего температуру поднимают до 80 °С для растворения олова. Катионит опять отфильтровывают, промывают 10 о-ной соляной кислотой до полного удаления солей олова, а затем водой — до полного удаления соляной кислоты. Катионит обезвоживают, отгоняя азеотропную смесь воды с бензолом последний удаляется из катионита при высушивании в вакууме. На активированном таким образом ионите проводили синтез дифенилолпропана в статических условиях (80 °С, 6 ч). Анализ показал повышение степени конверсии фенола по сравнению с опытами, в которых использовали неактивированный катионит дауэкс 50 w X 4. [c.153]


    Нефтепродукть . Метод азеотропной отгонки, по-вндимому, разработан именно на основе метода дистилляции нефтяных фракций вода при этом собирается в нижнем слое дистиллята. Одним из первых было сообщение Маркуссона [191 ] о применении толуола для анализа консистентных смазок. Дин и Старк [94] для определения влаги в нефтепродуктах использовали смесь 20% бензола и 80% ксилола или петролейный эфир (т. кип. 90—150 °С). Обычно для анализа нефтепродуктов применяют ксилол [4—6, 14, 300], толуол [4,5] или бензол [90]. Для определения влаги в пеках и ас-фальтах рекомендуется отгонка со смесью 20% бензола и 80% ксилола в аппарате Дина—Старка [14]. Воспроизводимость результатов при анализе асфальтовых эмульсий, содержащих 1— 50% воды, составляла 0,2—0,4%. При определении воды в минеральных маслах Фукс [117] использовал метод отгонки с бензолом. Для более четкого выявления капель воды в органическом слое он добавлял в ловушку 1—2 мл концентрированного раствора асфальта в бензоле. При этом на фоне окрашенного бензола были хорошо видны бесцветные капли воды. Их удаляли легким постукиванием или осторожным нагреванием приемника. В официальном методе ASTM для определения воды в нефтепродуктах и других битумных материалах [4—6] применяют приборы Дина—Старка (см. рис. 5-1 и 5-2). [c.275]

    Генерация схем производится с учетом выявленных ранее ограничений и оценок. Этапы, предшествующие непосредственно синтезу оптимальной схемы, позволяют сформировать список компонентов с учетом образования азеотропных смесей в процессе деления, добавления разделяющих агентов или избытка отдельных компонентов для обеспечения или исключения азеотропных условий, т. е. формализовать в некоторой степени этап синтеза, основанный на опыте и интуиции проектировщика. Список формируется также с учетом оригинальных разработок для разделения отдельных компонентов смеси и их физико-химических свойств. В результате этого выявляется стратегия целенаправленного поиска оптимальной схемы. Заметим, что список компонентов может отличаться от исходного питания по количеству, составу, числу компонентов. Непосредственно генерация вариантов схем заключается в анализе списка компонентов, выборе сечений и оценке получаемых схем, в том числе с учетом рекуперации тепла. Поскольку список компонентов формируется исходя из реальных условий протекания процесса (например, фазовое равновесие), математические модели должны воспроизводить эти условия. Однако если разделяемая смесь не содержит сильно неидеальные системы, то расчет можно проводить и по упрощенным методикам, поскольку такие системы чаще всего многовариантные. На рис. 2.10 схематически приведена взаимосвязь этапов синтеза. [c.142]

    В дальнейшем исследовалась фракция 72—84°. В процессе ее ректификации было обнаружено, что она, в основном, выкипает в пределах 73—74°. Из литературы [3] известно, что метилэтилкетон с водой образует азеотропную смесь с температурой кипения 74°. После тщательного высушивания поташем и нескольких перегонок на колонне из азеотропной смеси выделено вещество с температурой кипения 78,6° С, соответствующее метилэтилкетону. Элементарный анализ, показатель преломления и удельный вес этого вещества хорошо совпадают с данными для метилэтилкетона. Результаты анализа приведены в табл. 7. [c.170]

    Гарди, Боннер и Нойес С76] сравнили четыре разных метода определения воды в не содержащих растворителей нитроглицериновых порохах (т. е. в смесях нитроцеллюлозы с нитроглицерином, к которым добавлены небольшие количества стабилизаторов, пластификаторов и неорганических солей). По первому методу 10 г образца толщиной 1—2 мм помещали в эксикатор над концентрированной серной кислотой эти образцы выдерживали в эксикаторе до постоянного веса. Для анализа требовалось по меньшей мере 4 дня, однако время фактической занятости лица, проводящего анализ этим методом, было меньше, чем в случае применения любого из других изученных методов. По второму методу 10 г образца (такой же толщины) помещали на алюминиевую пластинку, плотно прикрываемую стеклянной воронкой, и переносили в баню, нагреваемую паром при атмосферном давлении (баня закрытая). Через 2 часа образец вынимали из бани и охлаждали в течение ночи в эксикаторе [77]. Третий метод был основан на азеотропной перегонке с четыреххлористым углеродом для анализа брали 100 г образца. При четвертом методе применяли титрование реактивом Фишера образцы весом по 5 г, толщиной приблизительно 1 мм, вносили 6 колбу для электрометрического титрования (см. стр. 81), содержавшую 60 мл предварительно оттитрованной смеси из 1 части эфира и 1 части метанола или из 1 части пиридина и 1 части этилацетата. Смесь перемешивали в течение 30—60 мин., затем добавляли определенный. избыток реактива Фишера и после 1 мин. перемешивания электрометрически оттитровывали стандартным раствором воды в метаноле. Результаты, полученные тремя из этих четырех методов, приведены в табл. 83 истинное содержание воды в образцах было неизвестно. В этой же таблице приведены дополнительные данные, полученные при исследовании образцов, предварительно высушенных до постоянного веса, к которым затем были прибавлены известные количества воды. Гарди с сотрудниками [76] пришли к выводу, что метод высушивания и метод титрования реактивом Фишера являются наилучшими. [c.224]


    Далее, выбор растворителя может быть произведен на основе анализа разности температур кипения разделяемых компонентов и их смесей азеотропного состава, образуемых с предполагаемым растворителем. Этот метод пригоден для подбора растворителей, не только для разделения веществ с близкой температурой кипения, но и принадлежащих к одному гомологическому ряду. Он основан на вполне очевидном положении, что если два вещества образуют каждое в отдельности азеотропную смесь с третьим веществом — растворителем, то большее отклонение от закона Рауля будет у того компонента, который дает азеотроп с более низкой температурой кипения (если рассматривать азеотроп с минимальной температурой кипения). Следовательно, при добавке растворителя активность и летучесть такого компонента повысятся в большей степени и разделение станет возможным. [c.566]

    Анализ смесей. Смесь органических веществ может быть твердой или жидкой, а также содержать одновременно твердую и жидкую фазы. В последнем случае не следует ожидать, что фильтрование приведет к разделению, поскольку фильтрат всегда будет содержать некоторое количество растворенного твердого вещества, а отфильтрованное твердое вещество — следы жидкости. Методы выделения чистых образцов компонентов из смеси могут быть как физическими, так и химическими. К физическим методам относится дробная перегонка. Однако она применима только в том случае, если вещества, входящие в состав смеси, сильно различаются по температурам кипения и не образуют азеотропных смесей. Хорошие результаты при разделении смесей двух веществ дает ис- [c.127]

    Анализ фракций нефти и нефтепродуктов на содержание в них индивидуальных веществ и классов углеводородов показывает, что нефть и ее фракции представляют собой сложную многокомпонентную смесь. Кроме того, любая нефть или ее фракция, обладая характерным распределением углеводородов и неуглеводородных соединений, в условиях перегонки и ректификации проявляет себя как смесь различной степени неидеальности. Смесь углеводородов одного гомологического ряда, как правило, ведет себя как идеальная, но в присутствии углеводородов других классов ее свойства в той или иной степени отклоняются от свойств идеальных растворов, подчиняющихся законам Рауля и Дальтона. Крайним проявлением такого свойства смесей углеводородов является образование различных азеотропных смесей. Эти явления из-за их сложности недостаточно изучены, в связи с чем процессы перегонки и ректификации смесей рассчитывают, используя законы идеальных растворов. Для инженерных расчетов точность такого способа допустима. [c.35]

    Данные о взаимной растворимости в системе вода — МХА были взяты из литературы [6], а для определения температуры кипения и состава азеотропа был проведен следующий опыт в куб ректификационной колонны, описанной ранее, загружали смесь хлоранилина с водой в соотношении 1 3,3. После установления равновесия отбирали ряд проб конденсата паровой фазы при постоянной температуре, равной 99,8° С. Анализ проб конденсата, проведенный методом диазотирования МХА нитритом натрия, показал, что азеотропная смесь вода — МХА содержит 7,1 вес.% (1,07 мол.%) МХА. [c.150]

    В качестве реактора использовали круглодонную колбу с электрическим обогревом и хорошей изоляцией, сводившей к минимуму тепловые потери. Колба была снабжена стеклянной насадочной ректификационной колонкой эффективностью 6 т.т. по смеси СвНе—ССЦ, позволявшей отбирать смесь, близкую к азеотропной ири изменении флегмового числа в широком интервале. Использовали уксусную кислоту марки ледяная ХЧ и этанол-ректификат, содержавший 4% воды. Анализ проб проводили па хроматографе ЛХМ-8МД с использованием детектора по теплопроводности. Твердая фаза — полисорб. Газ-носитель — аргон пропускали со скоростью 1,5 л/час. через колонку длиной 3 м, нагретую до температуры 160°. Для расчета хроматогра.мм использовали метод внутренней нормализации. [c.116]

    В качестве примера приведем случай, когда метод продуктового симплекса позволяет определить возможные варианты разделения многокомпонентной азеотропной смеси, чего нельзя добиться с помощью описанных ранее методов это — двадцатикомпонентная азеотропная смесь, представляющая собой нафталиновую фракцию каменноугольной смолы [25]. Из работы [30]. "посвященной исследованию структуры диаграммы данной смеси методом термодинамико-топологического анализа и разработанной на этой основе принципиальной технологической схемы разделения, известно, что рассматриваемая полиазео-тропная смесь образует 38 бинарных азеотропов с положительным и отрицательным отклонением от закона Рауля и 16 тройных седловых азеотропов. Состав разделяемой смеси, температуры кипения и коды компонентов приведены в табл. 111,8. Состав, температуры кипения и коды азеотропов даны в табл. 111,9. [c.123]

    Анализ на содержание бора см. [33, 34]. От мешающих примесей бор можно количественно отделить в виде борнометилового эфира, азеотропная смесь которого с метанолом кипит при 56° С. [c.161]

    Широкое распространение для выделения летучих компонентов из полимера получили также экстракционные методы. Их применение наиболее эффективно для анализа нерастворимых композиций, в частности отвержденных лаковых пленок, красок, или материалов с низкой термической стабильностью. Экстракция предварительно измельченного образца обычно проводится в аппарате Сокслета. Эффективность разделения определяется правильным подбором растворителя. Так, для отделения пластификаторов С молекулярным весом менее 1000 может быть рекомендован диэтиловый эфир, для более тяжелых пластификаторов можно использовать бензол, хлороформ и азеотропную смесь четыреххлористого углерода и метанола. Стадия предварительной экстракции предусмотрена также в методиках определения антиоксидантов и термостабилизаторов и остаточных мономеров в полимерах Менее употребительно отделение легкокипящих от полимерной части вакуумной отгонкой. Этот метод был применен при определении непрореагировавщего мономера в водных эмульсиях сополимеров акрилатов со стиролом пластификаторов в касторовом маслеспиртов в рабочем растворе водоразбавляемой эмали ФЛ-149Э24. [c.42]

    Анализ как диаграмм р — х, так и диаграмм t — х показывает, что при максимуме или минимуме на любой кривой пар и жидкость совпадают по составу, и поэтому растворы такого состава ведут себя при перегонке как чистое вещество, т. е. перегоняются, не-изменяя состава и сохраняя постоянной температуру кипения. Это, как мы увидим ниже (стр. 666), имеет очень важное значение для разделения жидкостей перегонкой. Смесь, которая соответствует максимуму или минимуму на кривой точек кипения, называется азеотропной смесью. [c.613]

    В настоядее время в лаборатории авторов изучается состав азеотропных систем органических жидкостей. Программа включает приготовление смеси компонентов, дистилляцию на колонке с 10—100 теоретическими тарелками и анализ дистиллата. Если азеотропная смесь гетерогенна, слои дистиллата можно анализировать по отдельности или же для гомогенизации смеси в нее можно ввести компонент, растворяющий все слои. В первом случае вследствие трудности отбора пробы могут быть получены неправильные результаты во втором—определение компонентов по их функциональным группам может усложняться наличием гомогенизирующих компонентов. [c.171]

    В другом варианте метода Мирта и Венкатарамана [39, 54] при определении влажности крахмала и хлопка содержащуюся в них воду предварительно отгоняют в виде азеотропной смеси с диоксаном, толуолом или ксилолом и полученный дистиллят количественно переносят в 1 М раствор уксусного ангидрида в пиридине. [Пиридин служит катализатором гидролиза уксусного ангидрида, а также связывает выделяющуюся кислоту см. уравнения (2.40, а—в). ] После завершения гидролиза добавляют избыток анилина и анализ продолжают так же, как описано выше. Подобную методику использовал Ризец [53 ] для определения воды в пиридине. К 5 мл образца прибавляют 2 мл очищенного уксусного ангидрида, реакционную смесь нагревают в течение 15 мин при 100 °С. Затем в колбу прибавляют 5 мл анилина и титруют 1 н. раствором щелочи. В таких же условиях выполняют холостой опыт. Для определения воды в уксусной кислоте Дас [19], возможно, применил более быстрый и точный титриметри-ческий метод с использованием уксусного ангидрида. После завершения гидролиза уксусного ангидрида к реакционной смеси добавляли избыток анилина и не вступивший в реакцию анилин определяли прямым титрованием хлорной кислотой. Подробная методика приготовления реагента приведена в разд. 2.2.1. [c.50]

    Уксусную кислоту высушивали по методу Эйхельбергера и Ла Мера [22] уксусную кислоту обрабатывали триоксидом хрома, добавляли триаце-тилборат и подвергали фракционной перегонке. Для анализа использовали среднюю фракцию. Вместо триацетилбората Брукенштейн [14] при перегонке использовал бензол. (Как отмечалось в гл. 5, азеотропная смесь бензол—вода, кипящая при 69,25° С, содержит 8,8% воды. Бензол образует бинарную смесь с уксусной кислотой, кипящую при 80 °С и содержащую около 2% кислоты.) [c.367]

    Исследование смеси муравьиной, уксусной, пропионовой, масляной и изомасляной кислот показало, что первые две (сначала муравьиная, а затем уксусная) образуют азеотропную смесь с бензолом. Пропионовая и масляная кислоты, кипящие при значительно более высокой температуре, чем бензол, образуют азеотропную смесь не с бензолом, а с толуолом и ксилолом 132], Бинарные азеотропные смеси кислота—углеводород очень чувствительны к влаге. Поэтому перед анализом смеси кислот необходимо переводить в соли и затем сухие соли разлагать сухим бензольным раствором толуолсульфокислоты. [c.138]

    Метод анализа в колбе емкостью 125 мл взвешивают 0,5 г исследуемого образца и добавляют бензиламина в количестве 15 мл. На шлифе устанавливают боковую надставную трубку с термометром для измерения температуры конденсирующихся паров. Колбу помещают на пеочаиую баню под вытяжным шкафом. Нагрев на песчаной бане осуществляют так, чтобы азеотропная смесь воды и бензиламина перегонялась при температуре ниже 100° С, а конденсирующийся чистый бензиламин оставался внутри колбы. Нагревание колбы с обратным холодильником осуществляют в течение 8 ч. Затем колбу охлаждают при температуре 40° С, по капле добавляют соляную кислоту (1 3) и механически перемешивают до тех пор, пока смесь не станет кислой, что проверяют по индикаторной бумаге, пропитанной конго красным. При постоянном перемешивании содержимое колбы охлаждают в ванне со льдом до тех пор, пока образовавшееся масло не станет кристаллическим. Готовые кристаллы собирают в тарированный тигель с пластинкой из пористого стекла (высушенный при 150° С), промывают ледяной водой для освобождения от кислоты и высушивают до постоянного веса при 105° С. Процент содержания мочевины X вычисляют следующим образом  [c.33]

    Стабилизация дистилляционных колон в неустойчивом режиме описаны в работе [21 ], где отмечены особенности работы дистилляционных колонн при гомогенной азеотропной дастилляции в частности существование множественного устойчивого режима в колоннах с бесконечно большим числом тарелок и флегмовом числом. Экспериментально исследована азеотропная дистилляция смеси содержащих (массовые доли) метанола 0,66, метилового эфира масляной кислоты 0,66 и толуола - 0,28. В стеклянной колонне диаметром 100 мм, высотой 7 метров с 40 колпочковыми тарелками, смесь вводилась на 21 - ю тарелку давлением атмосферным. Использована система автоматического контроля. Установлено существование 3-х устойчивых режимов (ранее для этой смеси отмечались 2 устойчивых режимов), которые фиксировались по распространению температурного фронта по высоте колонны. Результаты теоретического анализа хорошо согласованы с опытными данными. [c.98]

    Образец 1. На основании данных, приведецных в табл. VII. 1, можно заключить, что в пробе растворителя отсутствуют ароматические соединения (образец не растворяется в 84%-ной серной кислоте). Невысокая температура кипения дает возможность предположить наличие кетона или спирта, а кипение при определенной температуре указывает на однокомпонентный растворитель или азеотропную смесь. Наличие карбонильных групп указывает на присутствие кетона, а неомыляемость и отсутствие гидроксильных групп подтверждает то, что в состав растворителя не входят спирты и сложные эфиры. Следовательно, можно предположить, что анализируемый растворитель представляет собой кетон. Температура кипения и показатель преломления указывают на метилэтилкетон это и было подтверждено данными хроматографического анализа. [c.408]

    Вода отделялась от триэтилсилана в делительной воронке. Со спиртом он дает азеотропную смесь, кипящую около 65° С. Поэтому, после того как было установлено отсутствие обмена с водой, спирт отмывался добавлением воды. От трифенилсилана и триэтоксисилана вода отгонялась с бензолом по Дину и Старку. Перед изотопным анализом силаны очищались промывкой и фрак-ционированиед . [c.44]

    Представляет интерес анализ возможности выделения циклогексана из бензола методом обычной ректификации. При малом содержании циклогексана в исходной смеси можно рассчитать процесс ректификации смеси бензол — циклогексан как ректификацию идеальной смеси, принимая азеотропную смесь бензол — Таблица 93 ЦИклогексан за легкокипя- [c.146]

    Определение содержания винилового эфира в азеотропных смесях может быть проведено по удельному весу и вязкости посредством подбора эфирноспиртовой смеси, обладающей теми же константами, что и данная азеотропная смесь. Для анализа азеотропных смесей также использовался бисульфитный н [c.45]

    Подготовка к анализу. Реактив л-крезола готовят следующим обра зом. Смесь 500 г л<-крезола, 15 г и-толуолсульфокислоты и 100 мл бензола обезвоживают азеотропной дистилляцией, а затем отгоняют остав-шмйся бензол. Полученный реактив м-крезола хранят в стеклянной банке с притертой пробкой. Метанол сушат над прокаленным Си804 и перегоняют при 64-65 С пиридин - над прокаленным СиО и перегоняют При 114-115 °С этилацетат - над прокаленным ЫзхСОз. а затем над прокаленным СаСЬ и перегоняют. [c.25]

    Азеотропные области фенола и его производных значительно больше азеотроиных областей соединений с основными свойствами. Зти сведения в значительной степени облегчают решение рассматриваемой задачи. Некоторые эффективные методы исследования полиазеотропных смесей можно использовать только для исследования смесей, содержащих органические кислоты и основания. Сущность этих методов заключается в удалении всех кислот или всех оснований и в добавлении к оставшейся смеси известного количества подходящего кислого или основного компонента. Затем полученную смесь подвергают ректификации, так же как и исходную смесь до изменения ее состава. После проведения обеих разгонок анализируют собранные фракции. На основе полученных данных строят диаграммы для двух кривых разгонки и нескольких кривых, полученных на основе результатов анализа фракций. Эффективность описанного метода показана Лисицким и Сосновской [98, 122, 123]. Некоторые характерные случаи изображены на рис. 91—94. [c.136]


Смотреть страницы где упоминается термин Анализ азеотропных смесей: [c.294]    [c.146]    [c.35]    [c.129]    [c.15]    [c.250]    [c.26]   
Смотреть главы в:

Методы анализа лакокрасочных материалов -> Анализ азеотропных смесей




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Смесь азеотропная Азеотропные рас



© 2025 chem21.info Реклама на сайте