Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие белковых гормонов

    Механизм действия стероидных гормонов совершенно иной. Эти молекулы поступают в клетки и связываются со специфическими белками— рецепторами, находящимися в цитозоле [86—88]. Комплексы гормонов с белками перемещаются затем в ядро, где, по-видимому, вызывают изменение активности генов, регулируя процессы транскрипции или трансляции (рис. 6-15). [c.72]


    Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, как и всех стероидов (см. далее), считается генетический аппарат. Специфические рецепторы—белки —обеспечивают транспорт тиреоидных гормонов в ядро и взаимодействие со структурными генами, в результате чего увеличивается синтез ферментов, регулирующих скорость окислительновосстановительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма. [c.266]

    Первый этап действия любого гормона-это связывание с какой-то одной специфической молекулой или группой молекул, называемой рецептором гормона, которая обычно локализована либо на поверхности клетки-мишени, либо в цитозоле. Рецептор обладает очень высокой специфичностью и сродством по отношению к соответствующему гормону. Рецепторы водорастворимых пептидных и аминных гормонов, не способных быстро проходить через клеточную мембрану, располагаются на наружной поверхности клеток-мишеней, тогда как специфические белки, которые являются рецепторами жирорастворимых стероидных гормонов, легко проникающих сквозь мембрану, локализованы в цитозоле клеток-мишеней. [c.783]

    Далее тиреоидные гормоны попадают с током крови в органы-мишени. На больщинство тканей тиреоидные гормоны оказывают стимулирующее действие примечательное исключение составляют только мозг взрослого человека и некоторые репродуктивные ткани. Особенно сильно тиреоидные гормоны стимулируют метаболизм печени и мышц. Они связываются со специфическими рецепторными белками, которые в свою очередь обеспечивают проникновение тироксина в клеточное ядро. В результате взаимодействия тироксин-ре-цепторных комплексов со специфическими генами в клетках-мишенях резко возрастает синтез определенных ферментов и ферментных систем. Главный результат действия тиреоидных гормонов [c.803]


    Еще до того, как впервые была определена пространственная структура белка, было расшифровано строение близких белкам гормонов и антибиотиков (инсулин, адренокортикотропин и др.). При этом были получены обескураживающие результаты в том отношении, что одно только выяснение структуры белка еще не дает объяснения его физиологических функций. Очевидно, в скором будущем будет осуществлен синтез простейших белков и, вероятно, некоторых ферментов. Но научное значение этого достижения, по-видимому, ограничится подведением итогов большого периода работы исследователей белка. Само по себе знание формул белка еще не вскрывает природы его биологического действия. [c.5]

    Синтез белков в организме ускоряется соматотропным гормоном (гормоном роста) и тестостероном (мужским половым гормоном). Тормозится синтез белков гормонами коры надпочечников - глюко-кортикоидами. Регулирующее действие всех этих гормонов связано с их влиянием на скорость транскрипции. [c.72]

    Схема механизма действия глюкокортикоидных гормонов описана в гл. 44 и изображена на рис. 44.1. Многочисленные примеры подтверждают концепцию о том, что эти гормоны влияют на специфические внутриклеточные процессы путем изменения содержания в клетке критически важных белков, как правило, ферментов. Последнее определяется тем, что глюкокортикоиды способны регулировать в клетках-мишенях скорость транскрипции специфических генов. Для этого требуется, чтобы стероид-рецепторный комплекс связался со специфическими областями ДНК вблизи сайта инициации транскрипции и далее чтобы эти области определили специфичность ответа. Каким именно образом это связывание стимулирует или тормозит транскрипцию, как обеспечивается тканевая специфичность, почему один и тот же ген может быть активирован в одной ткани и ингибирован в другой,—эти и многие другие принципиальные вопросы остаются открытыми. [c.217]

    По своему действию стероидные гормоны млекопитающих делятся на половые и кортикоидные гормоны (гормоны коры надпочечников). Эти соединения имеют чрезвычайно большое биохимическое значение. Даже в очень маленьких концентрациях они сильно влияют на жизнедеятельность организма. Из мужских половых гормонов, так называемых андрогенов, укажем на тестостерон, а из женских — на эстрадиол и прогестерон. Тестостерон, эстрадиол и подобные им гормоны отвечают за правильное функционирование половых желез, за развитие вторичных половых признаков и в целом способствуют нормальному росту и хорошему самочувствию. Другой женский гормон, прогестерон, регулирует протекание беременности и является предшественником всех остальных стероидных гормонов. Эстрадиол и близкие к нему по структуре гормоны, например эстрон, относят к так называемым эстрогенам. С точки зрения строения они интересны тем, что содержат ароматическое кольцо. С другой стороны, прогестерон относится к так называемым гестагенам. Таким образом, эстрогены и гестаге-ны представляют две группы женских половых гормонов, имеющие разное назначение. Тестостерон кроме вышеперечислен-иых функций оказывает также анаболическое действие, т. е. способствует образованию белков и тем самым росту мышц (разд. 9.5.6). [c.226]

    Основной путь разрушения тирозина в организме животных начинается реакцией переаминирования с превращением в п-оксифенилпи-руват (рис. 14-20, реакция в). Фермент тирозинаминотрансфераза изучен довольно подробно, что объясняется индукцией его синтеза в печени в ответ на действие глюкокортикоидных гормонов (гл. 11, разд. Е, 7). Синтез этого фермента контролируется и на уровне трансляции [119], причем освобождение новообразованного белка из рибосом печени стимулируется циклическим АМР. Кроме того, этот фермент подвержен постранскрипционной модификации, включающей фосфорилирование [120], и характеризуется необычно быстрым оборотом [121]. [c.145]

    Следует подчеркнуть, что главной и отличительной особенностью молекулярных механизмов действия двух основных классов гормонов является то, что действие пептидных гормонов реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, в то время как стероидные гормоны (а также тиреоидные гормоны, ретиноиды, витамин Dj-ropMOHbi) выступают в качестве регуляторов экспрессии генов. Это обобщение, однако, не является абсолютным, и здесь возможны модификации, рассмотренные при описании отдельных гормонов. [c.297]

    Стратегию конструирования новых белков путем замены функциональных доменов или с помощью направленного мутагенеза можно использовать для усиления или ослабления биологического действия белка. Например, нативный гормон роста человека (ГРЧ) связывается в разных типах клеток как с рецептором гормона роста, так и с пролактиновым рецептором. [c.208]

    Биохимические функции. Соматотропин контролирует синтез белка, влияя на транспорт аминоюгслот из крови в мышечные ткани. Кроме того, показано влияние СТГ на процессы транскрипции и образование зрелой РНК. Действие на липидный обмен проявляется в активации липаз за счет их фосфорилирования и, как следствие, в стимуляции липолиза. Отмечено многоплановое влияние СТГ на углеводный обмен. Активация глюконеогенеза, а также ингибирование транспорта глюкозы в клетки под действием этого гормона приводят к гипергликемии и повышенному синтезу гликогена. Соматотропин регулирует процессы роста всего организма. Гипофункция гипофиза, приводящая к снижению синтеза и секреции СТГ, является причиной пропорционального уменьшения роста всех органов человека и животных. [c.148]


    Адреналин и глюкагон осуществляют регуляцию метаболизма гликогена путем изменения активности гликогенфосфорилазы и гликогенсинтазы (через цАМФ) таким образом, что торможение гликогеногенеза и стимуляция гликогенолиза осуществляются одновременно, т. е. реципропно. Глюкокортикоиды (11-гидроксистероиды) усиливают глюконеогенез за счет интенсификации катаболизма белков и аминокислот в тканях и вовлечения промежуточных метаболитов в процесс глюконеогенеза. Таким образом, в рассмотренных случаях адреналин, глюкагон, глюкокортикоиды действуют как антагонисты инсулина. На содержание сахара в крови влияет также гормон щитовидной железы тироксин (подобно инсулину). Гормоны передней доли гипофиза — гормон роста (соматотропин), АКТГ и, вероятно, другие факторы повышают уровень сахара в крови, однако механизмы действия этих гормонов в значительной степени являются опосредованными, поскольку они стимулируют мобилизацию из жировой ткани свободных жирньгх кислот, которые являются ингибиторами потребления глюкозы. [c.283]

    Фосфорилирование гастонов. В результате действия белковых гормонов происходит опосредованное фосфорилирование ядерньгх белков — гистонов и разрушение нуклеосом. Матрица при этом становится доступной для основных факторов инициации транскрипции, и начинается синтез РНК. При прекращении действия гормонов нуклеосомы восстанавливаются. [c.473]

    Гормоны — это такие химические вещества, которые переносятся кровью от одного органа или участка ткани к другому и выступают в качестве регуляторов физиологической активности, оказывая каталитическое или иное действие. Некоторые гормоны, включая тироксин,— довольно простые химические вещества, строение которых известно однако многие гормоны — весьма сложные белки, молекулы которых состоят из тысяч атомов (см. гл. XXIX). [c.220]

    Главное действие некоторых гормонов направлено на плазматическую мембрану клеток-мишеней. Под термином рецептор обычно понимают компоненты плазматических мембран, которые вовлечены во взаимодействие с данным гормоном. Они, ио-види-MOiMy, локализованы исключительно на поверхности мембранных клеток. Для того чтобы выяснить действие гормонов на молекулярном уровне, необходимо очистить и идентифицировать эти специфические мембранные рецепторные структуры, количество которых в тканях очень мало по сравнению с другим присутствующим материалом. Например, концентрация рецептора глюкагона в мембранах клеток печени очень низка и составляет 2,6 пмоль в 1 мг белка [30]. При столь малых количествах взаимодействие с иммобилизованными гормонами должно быть очень эффективным, чтобы обеспечить прочное связывание крупных мембранных фрагментов. Взаимодействие гормонов с их комплементарными рецепторами специфично и характеризуется высоким сродством. Константа диссоциации для глюкагона равна 10 —10 ° моль/л, для инсулина—5-10 " моль/л, а для норэпи-нефрина—10 —10 моль/л [35]. Очень трудно выделять такие малые количества стандартными методами. Использование биоспецифической хроматографии а высокоэффективных иммобилизованных рецепторах позволяет избирательно концентрировать [c.122]

    Из приведенного материала явствует, что синтез специфического белка можно продемонстрировать в опытах in vitro. Однако опубликованные данные о таком синтезе немногочисленны [12, 73—76, 124]. Чаш,е всего ссылаются на синтез в бесклеточной системе гемоглобина, белков чехла фага, Р-галактозидазы, дифтерийного токсина, триптофансинтетазы, а-амилазы и запасного глобулина семян гороха. Один из самых интересных примеров синтеза специфического белка обнаружен у личинки синей мухи alliphora erythro ephala, у которой под действием особого гормона, экдизона, на хромосомах слюнных желез образуются вздутые участки, называемые пуффами (стр. 239). Считают, что гормон этот активирует специфические локусы гена, в результате чего на цепях ДНК пуффа образуется специфическая щ-РНК. [c.277]

    Ранее считалось, что действие гормонов определяется тем, что они являются коферментами, т. е. такими веществами, которые активизируют работу ферментов. Другое предположение заключается в воздействии гормонов на клеточные мембраны. Первое, по-видимому, справедливо в случае тиреоглобулина (тироксина) или АКТГ, второе — в случае инсулина. Однако, как недавно было показано, АКТГ и ряд других гормонов (напри-.мер, половые гормоны — экстроген, альдостерон и др.) непосредственно влияют на гены, на ДНК. Под их действием стимулируется синтез РНК и белков. Гормоны осуществляют перенос необходимой химической информации от одних органов к другим и обеспечивают слаженную работу организма. [c.310]

    Щелочные экстракты из передней доли гипофиза содержат также тиреотропный гормон. Он лучше растворим, чем гормон роста, и не осаждается 30-процентным ацетоном [74]. Тиреотропный гормон растворяется в 50-процентном ацетоне и 50-процеит-ном пиридине [80] и, в отличие от истинных белков, не осаждается трихлоруксусной кислотой [81, 82]. Все попытки получить этот гормон в чистом виде окончились неудачей, несмотря на то, что его подвергали многократной (100 раз) переочистке. Молекулярный вес этого гормона 10 000 [83]. Лучшие его препараты свободны от примесей гормона роста и гонадотропного гормона [82]. Действие тиреотропного гормона на щитовидную железу обнаруживается по увеличению веса щитовидной железы [80]. При введении животному тиреотропного гормона содержание. иода в его щитовидной железе уменьшается, а в крови увеличивается [81]. Тиреотропный гормон стимулирует дыхание клеток [c.320]

    Необходимо признать, что до сих пор мы не в состоянии удовлетворительно объяснить, каким образом действуют белковые гормоны. Ни в одном из гормонов, за исключением тиреоглобулина, не было обнаружено никаких специфических простетических групп. Возможно, что гормональное действие гонадотропных гормонов в какой-то мере обусловлено присутствующими в их молекуле углеводными группами. Большинство белковых гормонов действует избирательно на один какой-либо орган или систему органов. Следует предположить, что белковые гормоны связываются клетками того органа, в котором они вызывают изменения. Так, например, тиреотропный гормон, несомненно, связывается клетками щитовидной железы, а адренокортикотропный гормон — клетками коры надпочечников. Поскольку в белковых гормонах не удается обнаружить никаких специфических групп, можно предположить, что избирательное соединение гормона с белком определенного органа обусловлено формой молекул гормона и молекул белка данного органа, взаимно дополняющих друг друга. В приложении к щитовидной железе это предположение означает, что клетки ее должны содержать антитиреотроп-ные группировки, способные фиксировать тиреотропный гормон, поступающий в железу с током крови. Точно таким же образом белки половых желез могут связываться с гонадотропными гормонами при помощи присутствующих в их молекулах антигона-дотропных группировок. Образование подобных комплексов гормона с белками органа, на который он действует, не подтверждено пока никакими экспериментальными данными, и это предположение в настоящий момент является чисто спекулятивным. [c.324]

    Быстрый прогресс, достигнутый за последние годы в области изучения нуклеинового и белкового обменов, позволил по-новому взглянуть на многие процессы, протекающие в клетках и тканях животных и растений. Появилась возможность рассматривать такие явления, как морфогенез, регуляторные механизмы клетки, действие ряда гормонов, передача нервного импульса, память в связи с фундаментальной ролью нуклеиновых кислот в этих процессах. Был дан определенный толчок и к дальнейшему изучению механизма действия регуляторов. роста растений. В связи с этим возникла необходимость в обобщении имеющегося в литературе материала и экспериментальных дангу гх, полученных за последние годы по вопросу о взаимодействии фитогор-манов (ауксинов, гиббереллинов и кининов) с нуклеиновыми кислотами и белками. Инициативу по подготовке такого рода сборника взяла на себя лаборатория биохимии фитогормонов Восточно-Сибирского биологического института. [c.3]

    Биологическое действие. Ретинол действует подобно гормонам, проникающим в клетку, — связывается с ядерными белками и регулирует экспрессию определенных генов. Он необходим для осуществления нормальной репродуктивной функции. Ретиналь участвует в акте зрения. 11-/(ис-ретиналь связан с белком опсином и образует родопсин. На свету родопсин диссоциирует, и г<мс-ретиналь переходит в транс-ретналъ. Реакция сопровождается конформационными изменениями мембран палочек и открытием кальциевых каналов. Быстрый вход ионов кальция инициирует нервный импульс, который передается в зрительный анализатор. Для повторного восприятия (т.е. в темноте) транс-ретиналъ восстанавливается алкогольдегидрогеназой в транс-ретинол (здесь возможны потери витамина А). Транс-ретинол изомеризуется в <мс-ретинол (здесь возможно восполнение витамина А). Z/мс-ретинол окисляется в г<мс-ретиналь, который, соединяясь с опсином, образует родопсин. Система свето-ощущения готова к восприятию следующего кванта света. Ретиноевая кислота участвует в синтезе гликопротеинов, усиливает рост и дифференцировку тканей. Ретиноиды обладают антиопухолевой активностью и ослабляют действие канцерогенов. Р-Каротин — антиоксидант и способен обезвреживать пероксидные свободные радикалы (ROO ) в тканях с низким парциальным давлением кислорода. [c.333]

    В мужских половых железах синтезируются стероидные гормоны — андрогены, основным представителем которых является тестостерон. Он начинает вырабатываться в клетках Лейдинга в период полового созревания (в 12—14 лет) под действием лютеинизирующего гормона гипофиза. Тестостерон проявляет андрогенное и анаболическое действие. Андрогенное действие тестостерона связано с формированием вторичных половых признаков (тембр голоса, мужская конституция тела и т. п.) и регуляцией репродуктивной функции. Андрогены также ускоряют закрытие зон роста костей. Анаболическое действие тестостерона связано с влиянием его на обмен белка. Этот гормон и другие андрогены усиливают синтез белка в печени, почках и, особенно, в скелетных мышцах. Поэтому андрогены и их синтетические аналоги используются в клинике и спорте для ускорения восстановления организма после болезни или напряженной мышечной деятельности, а также для наращивания мышечной массы. Индукция синтеза белка, в том числе ферментов, приводит к усилению процессов энергообразования. Тем не менее применение гормональных анаболиков в практике спорта для повышения физических возможностей спортсмена запрещено Международным олимпийским комитетом. Стероидные анаболики отнесены к группе допинговых средств, поскольку отрицательно влияют на здоровье спортсменов. [c.147]

    Разработка полипептидной теории и методик синтеза полипептидов и белков имела огромное значение для теории и практики биохимии. Синтетические полипептиды широко используются для изучения функций и механизмов действия белков в живых клетках. Некоторые гормоны, являющиеся пептидами, в больших количествах необходимы для медицинских целей. В настоящее время разработаны методы, позволяющие получать тысячи и даже миллионы тонн многих полимеров, в том числе состоящих из аминокислотных остатков, соединенных пептидными связями. Так как синтез полимеров — это прерогатива препаративной органической химии, остановимся здесь лишь на ключевых моментах синтеза полипептидов. [c.53]

    Цитозольный механизм действия характерен для гормонов, имеющих липофильную природу и способных проникать внутрь клеток через липидный слой мембраны (стероидные гормоны, тироксин). Эти гормоны, проникая внутрь клетки, образуют молекулярные комплексы с белковыми цитоплазматическими рецепторами. Затем в составе комплексов со специальными транспортными белками гормон транспортируется в клеточное ядро, где вызывает изменение активности генов, регулируя процессы транскрипции или трансляции (см. главы 11 и 12). Таким образом, в то время как пептидные гормоны влияют на постсин-тетические события, стероидные гормоны оказывают воздействие на геном клетки. [c.294]

    Согласно принятым в настоящее время (стр. 71) представлениям о механизме действия стероидных гормонов, кортикостероиды индуцируют синтез клеточных ферментов. Одно из главных последствий действия глюкокортикоидов на организм— стимуляция трансаминазной активности в печени, что влечет за собой увеличение производства гликогена за счет белков этим объясняются некоторые метаболические изменения, наступающие под воздействием определенных адренокортикоидных гормонов и их аналогов. Минералокортикоиды могут регулировать метаболизм электролитов за счет аналогичной стимуляции ДНК-зависимого синтеза РНК. Предполагают, что вновь синтезируемые белки представляют собой ферменты, участвующие в энергоснабжении системы транспорта ионов в почечных канальцах. [c.109]

    Сходные результаты получены и для регуляторных белков млекопитающих. Например, хорошо изучено действие белков-регуляторов, относящихся к семейству рецепторов стероидных гормонов. Эти рецепторные белки обеспечивают ответ клеток на различные липид-растворимые гормоны, активируя или подавляя активность определенных генов, В состав этих белков-рецепторов входит центральный ДНК-сязывающий домен, содержащий около 100 аминокислотных остатков. Как и в случае gal4, этот домен несет серию цинковых пальцев и узнает специфическую последовательность ДНК. У некоторых белков, входящих в состав семейства, домен, активирующий транскрипцию, находится на аминоконце. Кроме того, все рецепторы на карбоксильном конце белка содержат гормон-связывающий домен (рис. 10-25). Эксперименты по обмену доменов показали их взаимозаменяемость. Например, замена ДНК-связывающего домена рецепторного белка глюкокортикоида на ДНК-связывающий домен рецептора эстрогена приводит к тому, что [c.196]

    Старение как отдельных органов, так и целого растения связано с уменьшением метаболической активности и снижением скоростей синтеза РНК и белка. Мы уже говорили об изменениях в интенсивности дыхания и проницаемости мембран, сопровождающих созревание плода. Действие большинства гормонов замедляющих старение, по крайней мере частично обусловлен тем, что они поддерживают синтез РНК и белка. Старение ткани плода, например, у бобов подавляется ауксином или цито-кинином. В одних листьях старение замедляется под воздействием одного цитокинина, тогда как в других эффективен только один гиббереллин. Многие исследования показывают, что старение у растений представляет собой не просто какой-то замедляющийся и затухающий процесс, а скорее активную физиоло-гическую стадиЮ жизненного цикла, в такой же мере регулируемую гормонами, как и любая другая предшествующая ей стадия. Смерть индивидуальных клеток или тканей в растении, может быть нормальным, контролируемым и локализованны1Л. событием, помогающим в создании окончательной формы растения. В качестве примера можно привести гибель клеток тра-хеид и сосудов, из которых образуются полые, но эффективные клетки водопроводящей системы. [c.317]

    В прокариотических клетках сАМР связывается со специфическим белком, называемым катаболиче-ским регуляторным белком (КРБ) этот белок связывается непосредственно с ДНК и воздействует на экспрессию генов. Аналогия между этим эффектом и описанным выше действием стероидных гормонов очевидна. В эукариотических клетках с АМР связывается с протеинкиназой—гетеротетрамерным белком, состоящим из двух регуляторных (R) и двух каталитических (С) субъединиц. Связывание сАМР протекает следующим образом  [c.163]

    Тиреотропин оказывает существенное влияние на функцию щитовидной железы. Эффекты, вызываемые им (их время исчисляется минутами), включают стимуляцию всех стадий биосинтеза трииодтирони-на (Tj) и тироксина (Т ), в том числе концентрирование и органификацию иодида, конденсацию иодти-ронинов и гидролиз тиреоглобулина. Наряду с этим ТТГ вызывает в щитовидной железе и хронические эффекты, для проявления которых требуется несколько дней. К ним относятся повьпиение синтеза белков, фосфолипидов и нуклеиновых кислот, увеличение размеров и количества тиреоидных клеток. Долговременные метаболические эффекты ТТГ обусловливаются образованием и действием тиреоидных гормонов. [c.179]

    В коре надпочечников синтезируются десятки различных стероидов, но лишь очень немногие из них обладают биологической активностью. Эти последние составляют три класса гормонов глюкокортикоиды, минералокортикоиды и андрогены. Механизм действия перечисленных гормонов состоит в том, что сначала они соединяются со спещ1фиче-скими внутриклеточными рецепторами, далее этот комплекс связывается со специфическими участками ДНК и оказывает регулирующий эффект на экспрессию генов в результате меняется скорость синтеза некоторых белков, что в свою очередь влияет на различные метаболические процессы, например глюко-неогенез, и соотношение Na+ и К+. [c.205]

    Регуляция скорости транскрипции—это, по-видимому, важнейший элемент механизма действия глюкокортикоидных гормонов, но он не является единственным. Удалось выявить, что эти гормоны регулируют также процессинг и транспорт ядерных транскриптов (например, а,-кислых глюкопротеинов), скорость распада специфических мРНК (например, гормона роста и фосфоенолпируват-карбоксикиназы), наконец, посттрансляционный процессинг (различные белки вируса опухоли молочных желез). Создается впечатление, что этот и другие классы стероидных гормонов способны действовать на любом уровне переноса информации от ДНК к белку, причем относительное значение воздействия на каждом из уровней варьирует от системы к системе. [c.218]

    Другим хорошо изученным примером является аз -глобулин — главный белок, выделяемый самцами крыс с мочой. Он синтезируется в печени половозрелых (старше 40 дней) самцов. У самок же и кастрированных самцов этот белок синтезируется лишь в том случае, если животное получает тестостерон. Эстрогены подавляют образование а2 -глобулина, а для его максимального синтеза требуется совместное действие многих гормонов, включая гонадотропин, гормоны щитовидной железы, инсулин и глюкокортикоиды. Скорость синтеза а2 -глобулина непосредственно связана с количеством мРНК этого белка, которое в свою очередь зависит от скорости транскрипции гена а2 -глобулина. [c.234]

    СВОЙСТВ, например по связыванию полинуклеотпдов [41], по пригодности в пищу бактериям и крысам, по способности вызывать реакции, сходные с теми, которые катализируются ферментами в организмах. Так, эти искусственно синтезированные органические соединения способны каталитически разлагать глюкозу. Активность их, правда, мала, но, как указывается в сообщении об этом [14], ...первым белкам достаточно было проявлять хотя бы слабую активность . Кроме того, эти вещества могут оказывать действие, аналогичное действию меланоцитстимулирующего гормона [16]. [c.114]

    Некоторые бактерии, например Es heri hia oli, реагируют на недостаток глюкозы увеличением синтеза ряда ферментов, при помощи которых используются другие вещества, способные служить источниками энергии. Эта реакция опосредуется повьппением внутриклеточного уровня сАМР. В этом случае сАМР действует таким же образом, как, по-видимому, действуют стероидные гормоны в животных клетках он присоединяется к особьп рецепторным белкам, а комплексы сАМР с рецепторами в свою очередь связываются со специфическими участками бактериальной ДНК и активируют транскрипцию генов, кодирующих необходимые ферменты. [c.285]


Смотреть страницы где упоминается термин Действие белковых гормонов: [c.201]    [c.484]    [c.262]    [c.201]    [c.42]    [c.166]    [c.90]    [c.803]    [c.147]    [c.193]    [c.344]    [c.417]    [c.348]    [c.329]    [c.237]    [c.84]   
Смотреть главы в:

Химия и биология белков -> Действие белковых гормонов




ПОИСК





Смотрите так же термины и статьи:

Гормоны



© 2025 chem21.info Реклама на сайте