Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства высокомолекулярных соединений Молекулярный вес высокомолекулярных соединений

    Общие свойства. Устойчивость. В растворах высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, каучука и других веществ) каждая взвешенная частица представляет собой не мицеллу, а макромолекулу, размер которой 10 —см. Имея молекулярную или ионную дисперсность и будучи гомогенными, растворы высокомолекулярных соединений являются истинными растворами. Близость размеров макромолекул и частиц дисперсных систем объясняет наличие у них некоторых общих свойств. Так, например, частицы высокомолекулярных соединений не проходят через диализа-ционные мембраны, имеют сравнительно небольшую скорость диффузии, способны под влиянием внешних факторов осаждаться из раствора, рассеивать свет и т. п. Таким образом, растворы высокомолекулярных соединений обладают рядом свойств, характерных как для истинных растворов, так и для коллоидных систем. Кроме того, они обладают рядом специфических свойств. [c.113]


    Таким образом, в зависимости от условий и свойств ВМС и НМС, высокомолекулярные соединения в нефтях и нефтепродуктах могут находиться в молекулярном и надмолекулярном состоянии — в виде ассоциатов или комплексов. [c.12]

    Системы с коагуляционными структурами обладают, как правило, небольшой прочностью, известной пластичностью, а также некоторой эластичностью. Эластические свойства коагуляционных структур, согласно П. А. Ребиндеру, можно объяснить изменением энтропии системы в результате переориентации образующих систему структурных элементов, сопутствующей изменению ее формы. Такими структурными элементами служат отдельные коллоидные частицы (в отличие от высокомолекулярных соединений где эластическая деформация связана с изменением взаимной ориентации звеньев молекулярных цепей). Системы с коагуляционными структурами проявляют также ползучесть, т. е. способность при течении к медленному развитию значительных остаточных деформаций практически без заметного разрушения пространственной сетки. Ползучесть системы определяется высокой, хотя и вполне доступной измерению вязкостью в области весьма малых скоростей течения. Только при больших скоростях течения в таких системах происходит значительное разрушение структуры, так как связи мекду частицами не успевают восстанавливаться и скорость разрушения становится больше скорости восстановления. [c.320]

    От молекулярного веса во многом зависят свойства высокомолекулярных соединений. Молекулы с большим молекулярным весом, связанные между собой во многих точках соприкосновения, образуют, естественно, вещества более твердые и тугоплавкие. Аналогично и вязкость растворов таких веществ из-за их взаимодействия с молекулами растворителя увеличивается при увеличении молекулярного веса растворенных веществ. Напомним, что вязкостью называют свойство веществ — твердых, жидких, газообразных — оказывать сопротивление их течению, т. е. перемещению одного слоя вещества по отношению к другому под действием внешней [c.281]

    Все вышеизложенное подтверждает большую зависимость свойств высокомолекулярных соединений от строения макромолекул, их формы, молекулярной массы и агрегатного состояния. [c.487]

    Переход от низкомолекулярного к высокомолекулярному соединению связан с качественным изменением свойств, обусловленным количественным изменением молекулярной массы. Однако по числу атомов, входящих в состав молекулы, или по величине молекулярной массы нельзя провести резкой границы между классическими низкомолекулярными и высокомолекулярными соединениями, так как для соединений разных классов качественные изменения наблюдаются при различной молекулярной массе. Например, некоторые сложные производные сахаров (китайский и турецкий танин) с молекулярной массой примерно 1000 являются классическими низкомолекулярными соединениями, тогда как парафины с молекулярной массой около 1000 обладают всеми свойствами высокомолекулярных соединений. [c.20]


    Для синтеза блок-сополимеров используют олигомеры — вещества, которые по молекулярной массе и свойствам занимают промежуточное положение между полимерами и мономерами. Эти вещества, имеющие молекулярную массу примерно от 500 до 5000, как правило, не обладают свойствами высокомолекулярных соединений, но и не могут быть отнесены к низкомолекулярным соединениям, [c.27]

    Определение строения высокомолекулярных веществ и описание их свойств долгое время затруднялись невозможностью выделения их методами классической органической химии в химически чистом состоянии и нахождении их точных физических констант (температуры плавления, температуры кипения, молекулярной массы). На основе же данных элементного анализа можно было определить лишь состав вещества, но не его строение. Изучение строения и свойств высокомолекулярных соединений стало возможным только с развитием физической химии и появлением таких методов исследования, как рентгенография, электронография и другие физические методы. Были созданы также специальные методы определения молекулярной массы, формы и строения гигантских молекул, неизвестных в классической химии. [c.49]

    КОЛЛОИДНО-ХИМИЧЕСКИЕ СВОЙСТВА ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИИ И ИХ РАСТВОРОВ (МОЛЕКУЛЯРНЫЕ КОЛЛОИДЫ) [c.294]

    Коллоидная химия, являясь самостоятельным разделом физической химии, ставит своей задачей изучение свойств высокодисперсных, простирающихся до молекулярных размеров систем, обращая при этом внимание, с одной стороны, на выяснение роли поверхностных явлений на границе раздела фаз, с другой стороны — на изучение физико-химических свойств высокомолекулярных соединений как в твердом состоянии, так и в растворах. [c.329]

    Свойства высокомолекулярных соединений, в том числе синтетических каучуков, определяются не только химической природой, но и структурными параметрами молекулярных цепей их размерами, пространственным расположением мономерных звеньев, наличием разветвленных структур и т. д. и зависят от условий синтеза. [c.140]

    Для характеристики свойств сульфатного лигнина как высокомолекулярного соединения важно знать его молекулярную массу и молекулярно-массовое распределение (ММР). На рис. 2.5 приведены дифференциальные кривые ММР сульфатного лигнина ряда промышленных партий, из которых видно, что лигнин является полимолекулярным препаратом, и что все кривые ММР имеют максимум, лежащий в области низкомолекулярных фракций с молекулярной массой 700—1200. Среднемассовая молекулярная масса сульфатного лигнина колеблется от 4500 до 8600 (табл. 2.5), среднечисловая — от 650 [c.44]

    Свойства высокомолекулярных соединений зависят от молекулярного веса, химического состава и строения, формы макромолекул, ориентации и релаксации (релаксация — снятие напряжений в материале при нагревании), а также упорядоченности структуры макромолекулы. С увеличением молекулярного веса до известного предела улучшаются физико-механические свойства полимеров. Химический состав и строение оказывают большое влияние на тепло-, морозостойкость и химическую стойкость полимеров. Полимеры, имеющие менее разветвленное (асимметричное) строение макромолекулы, отличаются большей вязкостью, меньшей растворимостью и большей прочностью. От правильной ориентации макромолекул во многом зависит качество искусственного и синтетического волокон. [c.294]

    Многообразие свойств высокомолекулярных соединений различных классов заставляет исследователя часто искать различные, иногда весьма сложные пути определений молекулярных весов полимеров. Не всегда метод, удачно примененный для одного класса соединений, может быть перенесен без изменений на другие объекты. Однако можно надеяться, что приведенные выше примеры химического исследования помогут более сознательно подойти к подбору и разработке химических методов определения молекулярных весов. [c.279]

    Промежуточные значения молекулярной массы — от 500 до 5000 — имеют вещества, которые не обладают ясно выраженными свойствами высокомолекулярных или же низкомолекулярных соединений. К сказанному следует до- [c.308]

    Свойства высокомолекулярных соединений зависят от химического строения, молекулярного веса, структуры цепи и взаимного расположения ( упаковки ) молекул — надмолекулярной структуры. [c.11]

    Свойства высокомолекулярных соединений зависят от величины молекулярного веса, формы цепи, степени ее гибкости, химического строения и надмолекулярной структуры. [c.15]

    Набухание в жидкостях — одно из характерных свойств высокомолекулярных соединений. Изменение свойств резин при набухании связано с проникновением молекул жидкости в меж-молекулярные пространства каучука и ослаблением его межмо-лекулярных связей. Физическим изменениям резины сопутствуют и химические, поскольку после набухания резина более подвержена действию кислорода. Кроме того, жидкости могут экстрагировать из резины пластификаторы и другие растворимые ингредиенты, меняя ее состав и свойства. [c.189]


    Кинетические свойства золей и растворов высокомолекулярных соединений (как показывает рис. 2) выражены значительно (в сотни и тысячи раз) слабее, чем у обыкновенных низкомолекулярных растворов, но все же настолько, что можно экспериментально показать общность этих свойств для всех растворов— и коллоидных и молекулярных. В частности, такие свойства, как диффузия и осмотическое давление, вопреки мнению Грэма, как уже указывалось, присущи и коллоидным растворам. Наше рассмотрение начнем с броуновского движения, как лежащего в основе всех других молекулярно-кинетических свойств. [c.34]

    Вискозиметрический метод является самым простым и наиболее распространенным методом определения молекулярного веса и других свойств высокомолекулярных соединений, связанных с изменчивостью внутренней структуры растворов этих соединений. Однако для понимания принципиальной стороны этого метода необходимо предварительное знакомство с особенностями самого явления вязкости растворов высокомолекулярных соединений, весьма отличного от вязкости не только чистых жидкостей и растворов низкомолекулярных соединений, но и лиофобных золей. Поэтому рассмотрение вискозиметрического метода мы отложим до общего знакомства с явлением вязкости в изучаемых нами системах. [c.163]

    Значительная величина молекулярного веса определяет и специфические свойства высокомолекулярных соединений, которые не встречаются ни у истинных растворов низкомолекулярных веществ, ни у коллоидных систем. [c.393]

    Хт.шческое строение, молекулярная масса, структура цепи и вза-нкное расположение молекул определя1эт свойства высокомолекулярных соединений. [c.18]

    Мицеллы ПАВ по размерам и молекулярно-кинетичес-ким свойствам близки к макромолекулам высокомолекулярных соединений, и для определения мицеллярной массы ПАВ пригодны те же методы, которые применяются для нахождения молекулярной массы полимеров. Эти методы основаны на измерении интенсивности светорассеяния, скорости диффузии, скорости седиментации в поле центробежной силы ультрацентрифуги. (В последнее время предложен метод, основанный на измерении оптической плотности мицеллярных растворов, содержащих солюбилизированный олеофиль-ный краситель. Однако он находит лишь ограниченное применение — пригоден для неионогенных ПАВ с невысокой степенью оксиэтилирования.) [c.157]

    Следует отметить, что подобное деление коллоидных систем приближенно, так как нельзя провести резкого разграничения между суспензоидами и молекулярными коллоидами. Например, часто при взаимодействии суспензоидных частиц образуется гель со свойствами, сходными со студнями высокомолекулярных соединений. Кроме того, среди неорганических веществ много высокомоле- [c.73]

    Благодаря применению новых методов исследования, главным образом рентгенографии и электронографии, а также вискозиметрического, осмометрического и ультрацентрифугального методов определения молекулярных масс, оказалось возможным установить общность строения и свойств синтетических и природных высокомолекулярных соединений. Было показано, что природные и синтетические полимеры состоят ИЗ длинных нитевидных молекул, молекулярная масса которых достигает десятков и сотен тысяч. Накопление экспериментальных данных [c.51]

    Граничные (пристенные) слои жидкости, частично заимствуя физические свойства контактирующих фаз, характеризуются в этих условиях сдвиговой упругостью и повышенной вязкостью, переходя в иное агрегатное состояние - квазит-вердое или квазикристаллическое. Возникающие в дальнейшем на физически или химически адсорбированных молекулах, полимолекулярные граничные слои высокомолекулярных соединений могут достигать десятков и сотен микрометров и способны выдерживать весьма высокие нормальные нагрузки ( 10 Па), свойственные молекулярным кристаллам. [c.8]

    Область полимерной науки, посвященную С1руктуре и форме надмолекулярных образований, впиянию характера, тонкого строения, 1 степени молекулярной упорядоченности их на эксплуатационные свойства высокомолекулярных соединений, иногда называют полимерографией [41] по аналогии с металлографией. Она позволяет в общем виде предсказать механические свойства полимеров. [c.455]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    Известны также гетероциклические соединения нефти, содержащие в своей молекуле атомы серы и кислорода. Это вполне согласуется с представлениями о том, что в основе структуры молекул смол и асфальтенов лежат поликонденси- рованные циклические системы, построенные из карбо- и гетероциклических колец. Хотя и нелегко, но все же возможно отделить от смол близкие к ним по строению углеродного скелета высокомолекулярные полициклические углеводороды. Методы, пригодные для осуществления такого разделения, должны основываться на различии в свойствах этих двух классов высокомолекулярных соединений нефти, обусловленном появлением в молекулах смол большего или меньшего количества гетероциклических структур. Это различие быть может можно успешнее использовать на основе химических методов (гидрирование, окисление и др.). Во всяком случае нельзя согласиться с высказанным отдельными исследователями предположением, что смолы, выделенные из нефтяных остатков, представляют собою механическую смесь углезодородов с сера-и кислородсодержащими органическими соединениями. Если бы это было так, то тогда элементарный состав смол, выделенных различными методами, различался бы в очень широких пределах. Между тем как сопоставление многочисленных данных анализов показывает, что такие характеристики, как отношение С Н, удельный и молекулярный веса, содержание кислорода и серы, а также сумма всех гетероэлементов, сохраняют довольно устойчивое постоянство для нефтей близкой химической природы, а отношение С Н — для смол большинства исследованных нефтей. Конечно же, полнота отделения углеводородов от смол в сильной степени зависит как от их химической природы, так и от совершенства применяемых методов разделения, что не может не сказываться в большей или меньшей степени на результатах анализов смол. [c.368]

    Высокомолекулярные материалы типа фторсодержащих смол и фторкаучуков, используемые в качестве изоляционных материалов, в зависимости от химической структуры обладают большим разнообразием форм молекулярного движения и проявляют специфические свойства. Имеется большое число высокомолекулярных соединений с превосходными механическими тепловыми и электрическими свойствами, которые находят широкое применение в электронных и электротехнических приборах как изоляторы и диэлектрикио [c.175]

    Технические свойства высокомолекулярных соединений зависят, в основном, от природы и строения исходных мономеров и величины молекулярного веса. Чем длиннее цепь полимера, тем выше, при прочих равных условиях, механическая прочность вещества, но тем труднее его переработка в изделия. Взаимозависимость структуры и свойств макромолекул характеризуется следующимя- голожениями  [c.17]

    В 30—40-х годах XX века была выяснена химическая природа первичных частиц обратимых (лиофильных) коллоидов, оказавшихся макромолекулами. В связи с этим от коллоидной химии отделилась новая химическая дисциплина — физическая химия высокомолекулярных соединений. Однако в силу исторических причин, общности молекулярно-ккпстическил свойств лиофильных и лиофобных коллоидов, частого образования гетерогенных структур в молекулярных коллоидах, а также существования многочисленных композиций из высокомолекулярных соединений и высокодисперсных систем (например, резины, многие лакокрасочные материалы, стеклопластики, пено- и поропласты) предмет коллоидной химии трактуют более расширенно, чем сказано в 106, а именно, как физическую химию гетерогенного дисперсного состояния вещества, межфазовых поверхностей и высокомолекулярных соединений. [c.306]

    Ряд экспериментальных методов позволяет непосредственно измерить химический потенциал растворителя в растворе, т. е. величину —F. Из уравнения (11-21) хорощо видно, что эти свойства всегда позволяют определить молекулярный вес растворенного вещества М . Даже в том случае, если изучаемый раствор далеко не идеальный, всегда можно определить М ,, экстраполируя (jXj—Fi)IRTVi 2 к нулевой концентрации растворенного вещества. Экспериментально определяемые величины, которые могут при этом использоваться, называются коллигативными свойствами раствора. К Данному классу свойств относятся давление пара, понижение температуры замерзания, повышение температуры кипения и осмотическое давление. Из всех перечисленных свойств в случае растворов высокомолекулярных соединений обычно пользуются только измерением осмотического давления. Этот метод подробно рассматривается в разделе 13. [c.222]

    На основании изложенного следует сделать заключение, что свойства полимеров за]висят в основиом от молекулярного веса и гибкости цепи (которая в свою очередь определяется как молекулярным весом, так и химическим строением полимера), а также от фазового состояния полимера. Для изучения свойств высокомолекулярных соединений необходимо применять как химические, так и физические. методы исследования. [c.11]


Смотреть страницы где упоминается термин Свойства высокомолекулярных соединений Молекулярный вес высокомолекулярных соединений: [c.150]    [c.68]    [c.8]    [c.54]    [c.895]    [c.316]    [c.29]    [c.54]   
Смотреть главы в:

Химия высокомолекулярных соединений -> Свойства высокомолекулярных соединений Молекулярный вес высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Высокомолекулярные соединения молекулярный вес

ДНК молекулярные свойства



© 2025 chem21.info Реклама на сайте