Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Блок-сополимеры синтез

    Какими физическими свойствами должен обладать блок-сополимер целлюлозы и полиуретана Предложить возможную схему синтеза такого продукта. Способен ли такой блок-сополимер к кристаллизации Почему  [c.389]

    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]


    Деструкция полимеров — это разрушение макромолекул - под действием различных физических и химических агентов. В результате деструкции, как правило, уменьшается молекулярная масса полимера, изменяется его строение, а также физические и механические свойства полимер становится непригодным для практического использования. Следовательно, этот процесс является нежелательной побочной реакцией при химических превращениях, переработке и эксплуатации полимеров. В то же время реакции деструкции в химии высокомолекулярных соединений играют и положительную роль. Эти реакции используют для получения ценных низкомолекулярных веществ нз природных полимеров (например, аминокислот из белков, глюкозы из крахмала), а также для частичного снижения молекулярной массы полимеров с целью облегчения их переработки. С помощью некоторых деструктивных процессов можно определять строение исходных полимеров и сополимеров. Процессы, приводящие к разрыву химических связей в макромолекулах, как уже отмечалось, используют для синтеза привитых и блок-сополимеров. [c.67]

    Наибольшее практическое распространение получил метод синтеза блок-сополимеров типа термоэластопластов путем анионной полимеризации. При этом образуются живые блоки каждого из мономеров, и таким образом можно регулировать их длину и порядок чередования в цепи сополимера. Механизм такой полимеризации см. раздел 2.3. [c.65]

    Для синтеза блок-сополимеров используют олигомеры — вещества, которые по молекулярной массе и свойствам занимают промежуточное положение между полимерами и мономерами. Эти вещества, имеющие молекулярную массу примерно от 500 до 5000, как правило, не обладают свойствами высокомолекулярных соединений, но и не могут быть отнесены к низкомолекулярным соединениям, [c.27]

    Использование олигомеров для синтеза полимеров значительно расширило возможности синтетической химии высокомолекулярных соединений. На основе олигомеров получают блок-сополимеры, в которых удается сочетать гибкие и жесткие, гидрофильные и гидрофобные, карбоцепные и гетероцепные полимеры. Очень важным направлением синтетической химии высокомолекулярных соединений является синтез пространственных полимеров на основе олигомеров. [c.58]

    Добавляя при поликонденсации монофункциональные соединения, можно регулировать молекулярную массу продукта поликонденсации. Такие добавки монофункциональных реакционноспособных соединений используют при получении олигомеров, применяемых для синтеза блок-сополимеров (см. с. 201). [c.150]


    Развитие методов синтеза таких сополимеров значительно расширяет возможности получения полимерных материалов с разнообразными свойствами, так как становится возможным сочетать в одной молекулярной цепи участки природных и синтетических, гибких и жестких, гидрофильных и гидрофобных полимеров, полученных различными методами. Блок-сополимеры и привитые сополимеры уже довольно широко используются в промышленности пластических масс, синтетических каучуков и синтетических волокон. [c.201]

    Способы синтеза блок-сополимеров основаны на использовании концевых функциональных групп олигомеров или живых олигомеров, полученных ионной полимеризацией, а также на инициировании полимеризации мономера В олигомерными радикалами, построенными из звеньев А. Олигомеры, содержащие определенные функциональные группы, можно синтезировать методами поликонденсации при избытке одного из компонентов или в присутствии монофункционального соединения, ограничивающего молекулярную массу полимера (см. с. 150), а также методом цепной полимеризации в присутствии некоторых инициаторов и регуляторов. [c.201]

    Для получения олигомерных радикалов, инициирующих полимеризацию мономера при синтезе блок-сополимеров, могут быть использованы различные методы. [c.202]

    Другим очень перспективным методом синтеза пространственных блок-сополимеров является полимеризация олигоэфиров, содержащих двойные связи только в концевых звеньях  [c.204]

    В результате передачи цепи с разрывом от основной полимерной цепи отщепляются небольшие осколки, дающие новые центры полимеризации. Это приводит к заметному расширению молекулярно-массового распределения. Данный процесс используется при синтезе разнообразных блок-сополимеров. Пе- [c.125]

    Для синтеза блок-сополимеров одностадийной неравновесной сополиконденсацией в гомофазной системе необходимо, чтобы сомономеры отличались по активности, а скорость поступления интермономера в зону реакции была меньше скорости его взаимодействия с более реакционноспособным сомономером. [c.66]

    Развитие теории неравновесной (необратимой) поликонденсации, успехи в области ее препаративных методов создали широкие предпосылки по синтезу блок-сополимеров поликонденсационного типа. В первую очередь это относится к акцепторно-каталитической поликонденсации [4, 13, 15, 17], мягкие условия протекания которой позволяют осуществлять синтез блок-сополимеров при практически полном подавлении обменных процессов и открывают возможность, при должном знании закономерностей процесса, формирования блок-сополимеров непосредственно из мономеров (см. подразд. 4.2.6.1). Еще большие перспективы управления микроструктурой полимерной цепи в области поликонденсационных блок-сополимеров, а следовательно и их свойствами, открываются при использовании в качестве исходных веществ для их синтеза олигомеров и полимеров с концевыми функциональными группами [13, 15, 27, 69а, 344-370]. [c.80]

    Для синтеза блок-сополимера можно исходить из готовых блоков, содержащих на концах реакционноспособные группы, которые могут инициировать радикальную или ионную полимеризацию второго мономера, в результате чего образуется блок звеньев второго типа. Наиболее перспективны для получения блок-сополимеров живущие полимеры [88], (см. раздел 3.2.1.2 и опыт 3-52), способные инициировать анионную полимеризацию добавленного мономера. [c.183]

    Наиболее распространен метод синтеза полимерных блоков с реакционноспособными концевыми группами, которые затем связывают действием бифункциональных соединений. Примером таких блок-сополимеров является синтез плюроникса, проведенный Р. Хартом 7о1 из а-пропиленгликоля, окиси пропилена и окиси этилена  [c.641]

    Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез живых полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроапион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС стирол — бутадиен — стирол) обладают ценными свойствами они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, подошвы для обуви и [c.64]

    Проводя синтез полиэфиров в присутствии избытка одного из компонентов, получают олигоэфиры, содержащие на концах молекул только гидроксильные или только карбоксильные группы. Аналогично можно синтезировать олигоамиды, содержащие на концах только амин-ные или только карбоксильные группы. Для получения блок-сополимеров можно использовать олигоэтиленоксиды, содержащие на концах макромолекул гидроксильные группы. Так, при нагревании олигоэти-леноксида, этиленгликоля и диметилтерефталата синтезирован блок-сополимер полиэтиленоксида и полиэтилентерефталата  [c.201]


    Живые олигомеры могут быть получены анионной полимеризацией в присутствии металлоорганических соединений или комплексных катализаторов (см. с. 88, 91). При прибавлении к таким олигомерам мономера протекает полимеризация и образуется сополимер, состоящий из двух или нескольких блоков, построенных из различных мономеров. На этом принципе основан метод синтеза алломеров полимери-зуя один мономер (например, пентен-1), получают живой олигомер, при последующем добавлении второго мономера (например, бутена-1) протекает блок-сополимеризация. После полного превращения второго мономера можно снова добавлять первый и т. д. По этому методу можно получать блок-сополимеры с разным сочетанием блоков, различающихся как по химическому строению, так и по молекулярной массе. Преимуществом метола является отсутствие гомополимеризации. [c.202]

    Такие олигомеры легко могут быть получены путем поликонденсации гликоля с двухосновной кислотой в присутствии непредельной одноосновной кислоты (например, акриловой). При последующей полимеризации этих олигоэфиров образуются пространственные блок-сополимеры олигоэфиров и соответствующей непредельной кислоты. Меняя исходные компоненты при синтезе олигоэфиров и степень полимеризации последних, можно в широких пределах изменять свойства получаемых полимеров. Так как полимеризация указанных олигомеров связана с образованием полимеров сильноразветвлеиных и пространственных (трехмерных), то уже на очень ранних стадиях полимеризации наблюдается резкое возрастание вязкости среды, что сильно влияет на кинетику процесса. [c.204]

    Этот же метод синтеза используется для получения пространственных кремнййорганических блок-сополимеров, [c.204]

    Чтобы получить привитой сополимер в чистом виде, реакцию следует проводить в таких условиях, при которых гомополимеризация практически не протекает. Соотношение выходов привитого сополимера и гомополимера определяется соотношением скоростей этих реакций. Получение привитого сополимера, практически не содержащего гомополимера, возможно в тех случаях, когда скорость прививки значительно превышает скорость гомополимеризации или гомополимеризация протекает с большим индукционным периодом, достаточным для образования привитого сополимера. К сожалению, большинство методов синтеза привитых сополимеров, применяемых в настоящее время, позволяет получать смесь привитого сополимера и гомополимера или, как в случае механо-химического инициирования, смеси привитых и блок-сополимеров. [c.205]

    Реакции концевых групп играют большую роль в синтезе полимеров, так как все методы синтеза сводятся к взаимодействию конпевых групп растущих цепей с молекулами мономера или друг с другом. На взаимодействии концевых групп основаны также методы синтеза блок-сополимеров. [c.223]

    Этот метод синтеза блок-сополимеров был разработан впервые А. А. Берлином. Используя различные полиолы и кислоты, а также изменяя степень полимеризации олигоэфиров, можно в широких пределах изменять и свойства блок-сополимеров. Такие полимеры применяются в промышленности в качестве защитных покрытий, клеев, армированных пластиков, изоляционных материалов. [c.355]

    К сожалению, в книгу не включены синтезы многих важных классов полимеров, таких, как фторсодержащие и координационные полимеры, а также не освещены такие важные методы синтеза, как фотоищщиированная и радиационная полимеризация, новейшие методы получения пространственных блок-сополимеров (типа поли-эфиракрилатов) и т. п. Большим недочетом является то. [c.5]

    Однако наибольшее применение для синтеза бюк-сополиме-Ров нашла анионная и ионио-координационная полимеризация. Наличие живых полимеров при анионной полимеризации и Длительное сохранение активности растущих цепей ири ионно- оординационной позволяют проводить этот синтез. В качестве Г1римера можно привести получение блок сополимера изопрена Стирола. Живой полимер стирола взаимодействует с изо- [c.189]

    При свободнорадикальном инициировании в массе, растворе или эмульсии, использовании смешанного катализатора (С2Нз)зВ-02 или облучении у-лучами синтезированы 1 1-сополимеры изобутилена с хлортрифтор- и тетрафторэти-леном [31-34]. Для пар изобутилен - винилиденхлорид и изобутилен - дихлор-дифторэтилен сополимеризация возбуждалась облучением у-лучами °Со заранее приготовленных канальных комплексов тиомочевины с соответствующими мономерами [34]. В случае винилхлорида сополимер обогащен хлорсодержащим мономером (Гизо-с4н =0,34, 2,11, 333 К) [35]. Получены 1 1-сополи-меры изобутилена с малеиновым ангидридом и диэтилфумаратом, представляющие интерес как эмульгирующие агенты, сорбенты металлов из растворов, модификаторы каучуков и для других целей [36]. Структура полимерных продуктов не зависит от состава исходной смеси мономеров и типа инициатора. С использованием принципа чередования осуществлен синтез сополимеров изо-бутилен-циклопентен-ЗОз, блок-сополимера полиизобутилен-норборнен-802 и изобутилена с бутадиеном [37,38]. [c.203]

    Из отдельных представителей следует указать на блок-сополимеры изобутилена с изопреном, дающие при химическом и фотохимическом структурировании пленки с необычно высокой адгезией к металлам [60] фрагментарный блок-сополимер изобутилена с гидроксиалюмоксаном [68] как пример сополимеризации полиизобутилена с мономером, генерируемом in situ, и трехлучевой сополимер изобутилена со стиролом (а-метилстиролом) [63-65 -демонстрация возможностей тонкого органического синтеза в приложении к полимерным объектам. [c.208]

    В первой части обсуждены тенденции развития области поликонденсации. На базе современных данных проанализированы особенности равновесной и неравновесной поликонденсации, константы равновесия различных процессов, влияния на них строения исходных веществ, природы реакционной среды, температуры реакции, включая равновесие в таких новых, сложно протекающих процессах, как поликонденсация тетранитрилов ароматических тетракарбоновых кислот с диаминами. Проанализированы механизм и закономерности формирования макромолекул в процессах поликонденсации, в том числе формирования микроструктуры полимерной цепи в процессах сополикон-денсации (образование статистических и блок-сополимеров), получения полимеров, построенных по типу "голова к хвосту" и конформационно-специфической поликонденсации, с учетом химического строения исходных веществ, функциональности, реакционной способности функциональных групп, природы реакционной среды, возможных побочных процессов. Рассмотрена проблема разнозвенности поликонденсационных полимеров и показана необходимость ее познания для создания полимеров с желаемым комплексом свойств. Проанализированы данные о влиянии природы реакционной среды на физическую структуру синтезируемых поликонденсацией полимеров с жесткими цепями макромолекул и показаны возможные пути регулирования конформаций макромолекул в процессе синтеза. [c.4]

    Неравновесная поликонденсация в силу отсутствия в этом процессе обменных деструктивных превращений, конечно, при должном знании соответствующих закономерностей, открывает широкие перспективы целенаправленного синтеза сополимеров желаемого строения, в частности блок-сополимеров и регулярно-чере дующихся. [c.17]

    На основании анализа полученных результатов были разработаны способы синтеза сополимеров как статистического, так и блочного строения [281, 283, 284]. Было найдено, что при одно- и двухстадийной сополиконденсации в растворе необходимым условием для формирования блок-сополимеров является постепенное введение интермономера к раствору сомономеров (метод А). При введении интермономера (дихлорангидрид терефталевой кислоты) в твердом виде такая постепенность обуславливается скоростью его растворения. Однако скорость дозировки надежнее и проще контролировать, подавая раствор интермономера в зону реакции с известной скоростью (метод А , для х = 15 мин - А ). [c.65]

    Наряду с одно- и двухстадийной сополиконденсацией для синтеза блок-сополимеров использовали также и трехстадийный способ [283]. Принцип трехстадийной сополиконденсации заключается в том, что поликонденсацию каждого сомономера с интермономером проводят в различных реакционных объемах. После окончания реакции в каждой из систем их объединяют, в результате чего протекает сополиконденсация между образовавшимися на первых стадиях макромолекулами. Интермономер в одной системе берут в избытке по отношению к сомономеру, в другой - в недостатке с таким расчетом, чтобы суммарные мольные количества функциональных групп интермономера и сомономеров были равны. Длина блоков в сополимере определяется величиной отклонения от эквивалентности функциональных групп на первых двух стадиях, и наименьшее значение К сополимера было получено при наибольшем приближении к эквивалентности между интермономером и сомономерами на первых стадиях. [c.66]

    При этом реальны по крайней мере три возможных способа получения поликонденсационных блок-сополимеров. Рассмотрим это на примере синтеза по-лиарилатариленсульфоноксидных блок-сополимеров  [c.80]

    Наряду с синтезом поликонденсационных блок-сополимеров, содержащих в своем составе блочные последовательности, различных гетероцепных полимеров, осуществлен синтез и блок-сополимеров на основе блочных компонентов карбо-цепных полимеров. В частности, получены и исследованы полиарилатбутади-еновые и полиариленсульфоноксидбутадиеновые блок-сополимеры при применении в качестве одного из блочных компонентов олигобутадиена и его производных [367-370]. Такое конструирование полимерной цепи открывает новые возможности модификации гетероцепных полимеров. Так, известно, [371], что деформация полиарилатов протекает без образования шейки. Было найдено, что у полиари-латбутадиеновых блок-сополимеров, содержащих до 30% блоков полибутадиена, при деформации возникает шейка, что связано с увеличением подвижности полиарилатной фазы за счет своеобразной пластификации ее блоками бутадиена [367]. [c.84]

    Широкие возможности направленного регулирования свойств полиарилатов открывает синтез смешанных полимеров на основе смеси нескольких дихлорангид-ридов дикарбоновых кислот и бисфенолов, а также, как это было отмечено в части I, синтез блок-сополимеров с полиарилатными фрагментами в цепи [15, 33, 68, 116-148]. [c.162]

    М1М1М1М2М2М2М2М1М М2М2Мз ).Один из методов получения таких сополимеров - синтез живущих полимеров при анионном процессе с последующим добавлением второго мономера. Например, блок-сополимеры бутадиена со стиролом получают таким методом. Сначала полимеризуют часть стирола с образованием макроаниона, к последнему добавляют бутадиен, который сополимеризуется с макроанионом стирола, при этом анион перемещается на конец растущей макроцепи. При добавлении новой порции стирола образуется третий блок в пределах одной макромолекулы. Этот процесс продолжают до израсходования мономеров. Блок-сополиме-ры нашли широкое применение в различных отраслях промышленности благодаря наличию многих ценных свойств (высокая прочность, эластичность, ударопрочность и др.). [c.41]


Смотреть страницы где упоминается термин Блок-сополимеры синтез: [c.588]    [c.217]    [c.89]    [c.205]    [c.478]    [c.23]    [c.127]    [c.379]    [c.158]    [c.158]    [c.198]    [c.179]    [c.23]   
Полимерные смеси и композиты (1979) -- [ c.114 , c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Блок-сополимеры

Сополимер синтез

Сополимеры блок-сополимеры



© 2025 chem21.info Реклама на сайте