Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОРГАНИЗАЦИЯ ЛИПИДОВ В МЕМБРАНЕ

    К сожалению, вопрос о существовании систем водородных связей в структуре биомембран никак не связан с организацией липидов и белков в мембранах. Во всяком случае, исходя из существующих представлений об ориентации фосфолипидов в мембранах [118], это никак не следует. В качестве возможного пути для протонов предлагают полярные группы молекул фосфолипидов на поверхности мембраны [109]. Однако особенность структуры систем водородных связей, как будет показа- [c.42]


Рис. 7.1. Принципиальная схема организации липопротеиновой клеточной мембраны, показывающая тесную связь между липидами и белками [102 . Рис. 7.1. <a href="/info/1811804">Принципиальная схема организации</a> липопротеиновой <a href="/info/4417">клеточной мембраны</a>, показывающая тесную <a href="/info/1536807">связь между липидами</a> и белками [102 .
    При исследовании мембран всегда имеют дело с большим числом молекул. Мембраны, встречающиеся в природе, представляют собой очень сложные системы, состоящие из большого числа различных липидов и протеинов, встроенных в липидную мембрану (рис.3.46). В силу этого исключительно сложно получить детальное представление об индивидуальных молекулах подобно тому, как это было сделано для протеинов в растворах. Только для некоторых модельных систем, таких, как мицеллы и липосомы, которые состоят из вполне определенных компонентов, можно надеяться на то, что будут получены надежные ответы на принципиальные вопросы, касающиеся их организации и движения. В дальнейшем результаты, полученные для модельных мембран, могут быть перенесены на мембраны, встречающиеся в природе. [c.156]

    Ядерные мембраны содержат белки, липиды, РНК и ДНК. Функции мембран барьерная, транспортная и организаторская (например, в пространственной организации хроматина). [c.48]

    Другой метод исследования мембран заключается в получении сколов замороженных при температуре жидкого азота клеток и контрастировании образующихся поверхностей с помощью напыления тяжелых металлов (платина, золото, серебро). Полученные препараты просматривают в сканирующем электронном микроскопе. При этом можно увидеть поверхность мембраны и включенные в нее мозаично мембранные белки (рис. 19). Такая организация мембран хорошо объясняется жидкокристаллической моделью с мозаичным вкраплением мембранных белков, в которой мембранные липиды образуют бислой, где неполярные области их молекул обращены друг к другу в центральной части мембраны, а их полярные группы смотрят наружу (рис. 20). Мембранные белки пронизывают бислой мембраны и могут диффундировать в [c.30]

    В реальных условиях не только природные, но часто и искусственные мембраны суш ественно неоднородны по липидному или белковому составу. В структурной организации стабилизации таких систем наряду с обычными гидрофобными эффектами важное место занимают так называемые липид-белковые и белок-белковые взаимодействия. Эти термины используют для обозначения широкого круга разнообразных, отличаюш ихся по механизмам явлений, которые приводят к неравномерному распределению молекулярных компонентов в мембранах — микрогетерогенности мембран. [c.57]


    Несмотря на то что каждому типу мембран присущи определенные липидные и белковые компоненты, основные структурные и функциональные особенности, обсуждаемые в этой главе, характерны как для внутриклеточных, так и для плазматических мембран. Прежде всего нам хотелось бы рассмотреть структуру и организацию главных компонентов всех биологических мембран - липидов, белков и углеводов. Затем мы обсудим механизмы, используемые клетками для транспорта малых молекул через плазматическую мембрану, а также способы поглощения и выделения клетками макромолекул и крупных частиц. В последующих главах будут проанализированы некоторые дополнительные функции плазматической мембраны роль в клеточной адгезии (гл. 14) и в сигнальных функциях (гл. 12). [c.349]

    Ультраструктурная организация мембран дисков рассматривается в настоящее время в рамках мозаичной модели Зингера — Никольсона. Действительно, липиды дисков организованы в виде бислоя. На это указывают данные, полученные методом двойного лучепреломления и рентгеноструктурного анализа. Различные фосфолипиды распределены асимметрично по обе стороны бислоя. Так, фосфатидилэтаноламин преимущественно локализован на внешней, а фосфатидилсерин и фосфатидилхолин — на внутренней стороне мембраны диска. [c.123]

    В отличие от липидов у мембранных белков нет единого способа структурной организации. 30—50% белка имеет конфигурацию -спирали, остальная часть находится преимущественно в виде беспорядочного клубка. Вероятно, часть белков лишена ферментативной активности и участвует только в поддержании мембранной структуры. В то же время доказано, что для осуществления белками некоторых функций необходима их строго упорядоченная взаимная организация в мембране. Мембранные белки подразделяются на две группы — периферические и интегральные. К первой группе относят белки, легко вымываемые из мембраны и, таким образом, связанные с поверхностями мембран. Вторую группу составляют белки, частично или полностью погруженные в толщу мембраны, а иногда пронизывающие ее насквозь. Обычно интегральные белки образуют комплексы с липидами. Белки и липиды в мембране могут быть связаны ковалентно, а также за счет электростатического и гидрофобного взаимодействий. [c.41]

    Жидкостно-мозаичная модель бислоя, по-видимому дает адекватное представление о структурной организации поверхностной мембраны и многих внутриклеточных мембран. В ней предпола ается наличие больших участков, состоящих только из липидов, без всяких включении, а также белков, ответственных за многие метаболические функции мембран Интегральные белки играют очень важную роль они участвуют в образовании ионных каналов, выполняют функцию мембранных насосов и переносчиков различных веществ, являюгся рецепторами и распознающими молекулами. [c.20]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]


    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (К. 81ашег, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. XX в. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру два электронно-плотных слоя каждый толщиной 2,5 —3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). [c.18]

    Доминирование в мембране архебактерий липидов, образованных на основе ди- и тетраэфиров, поставило вопрос о принципиальной ее организации. По современным представлениям, у всех эубактерий и эукариот основу элементарной (липопротеиновой) мембраны составляет липидный бислой (см. рис. 15). Диэфиры архебактерий способны образовывать элементарные мембраны, состоящие из двух ориентированных слоев липидных молекул. Молекулы тетраэфира имеют длину порядка 5—7,5 нм. Толщина мембраны архебактерий примерно 7 нм. Такая мембрана не может быть организована из двух слоев тетраэфирных молекул. Очеввдно, что в данном случае она представляет собой липидный монослой (рис. 103). Монослойные липидные мембраны обладают, очевидно, повышенной жесткостью по сравнению с бислойными. Обнаружение липопротеиновой мембраны, в основе которой лежит [c.411]

    Несмотря на кажущуюся простоту, очевидно, что бакгериородопси-новая протонная помпа представляет собой сложную систему. Прежде всего путь, который должен пройти Н"", чтобы пересечь мембрану, составляет не менее 5 нм, т.е. значительно превышает расстояние, на которое он может быть перенесен при любом кон-формационном изменении ретиналя. Это означает, что поглощение кванта света должно приводить к возникновению напряженной конформации всего бактериородопсинового комплекса, служащей в дальнейшем источником энергии для переноса Н+ против электрохимического градиента. В организации такого переноса принимают участие ориентированные поперек мембраны а-спи-ральные тяжи и мембранные липиды, формирующие протонные каналы, природа и механизм действия которых пока не известны. [c.422]

    Мысль о том, что с мембранами связаны белки, высказал впервые Дж. Даниелли в 1935 г. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границе раздела масло — вода и мембрана — вода. Хотя в то время какая-либо информация о мембранных белках отсутствовала, Дж. Даниелли и X. Давсон в том же 1935 г. выдвинули гипотезу об общем принципе структурной организации клеточных мембран, в соответствии с которым мембрана представляется как трехслойная структура (рис. 312) —своеобразный сэндвич, где двойной слой ориентированных одинаковым образом липидных молекул заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. Предполагалось, что в этой структуре саязывание липидов с белками осуществляется за счет полярных взаимодействий. Поскольку толщина мембраны в то время не была известна, считалось, что пространство между двумя липидными монослоями может быть заполнено липоидным, жироподобным материалом. [c.581]

    Существуют значительные различия между окружением агрегатов жирных кислот в биомембранах и простых мицеллах, которые, можно думать, впияют и на протекание химических реакций. Значительно отличаются радиусы кривизны, что может оказать существенное влияние на взаимодействия соседних молекул. Мембраны состоят не только из молекул липидов, они содержат также липо— фильные белки и стероиды. Однако мицеллы также создают углеводородное микроокружение, имеющее определенную степень молекулярной упорядоченности, и в то же время в таких системах довольно велико отношение поверхности к объему, существенное для контакта водной фазы и образующихся радикалов. Хотя радиационное окисление в чистых растворах жирных кислот ранее также исследовали, может возникнуть вопрос относительно однородности оксигенации растворов. В мицеллярных растворах, однако, установление равновесия для О 2 протекает полностью и быстро [Ц]. В данной работе для исследования роли организации и геометрии молекул использовали модельные мицеллярные системы, образованные мылами линолевой, линоленовой и арахидоновой кислот. Авторы считали, что существует взаимосвязь между образованием сопряженных [c.329]

    Белок полосы III из мембраны эритроцитов человека представляет собой трансмембранный белок с молекулярной массой около 100 кДа (примерно 800 аминокислотных остатков). Это транспортный белок, две молекулы которого образуют анионный канал для ионов СГ и НСО3, пассивно перетекающих через мембрану в соответствии с градиентами их концентраций [242-244]. Полипептидная цепь белка в а-спиральной конформации несколько раз пронизывает бислой около трети его цепи с N-конца помещена в цитоплазму, а короткий С-концевой участок расположен во внеклеточном пространстве (рис. 1.6). Для того чтобы понять механизм функционирования транспортного белка полосы III, как и механизмы действия других мембранных белков, необходимо знать трехмерную структуру молекулы в условиях липидного бислоя. Для получения такой информации требуется, на первый взгляд, почти невозможное. Во-первых, необходимо отделить трансмембранный белок от липидов и других мембранных белков, не повредив его молекулярной трехмерной структуры, что очень трудно. Во-вторых, из выделенных белковых молекул следует получить, не нарушив их пластической, легко деформирующейся при изменении внешних условий структурной организации, высокоупорядоченный монокристалл требуе-мых размеров, что не всегда удается даже в случае водорастворимых [c.58]

    Существенным для понимания всех аспектов переноса электронов в мембранах, а также сопряженных с ним процессов является вращательная и латеральная диффузия не только подвижных переносчиков, но и отдельных комплексов и их агрегатов. Подвижность комплексов приводит к тому, что теряет смысл понятие единой структурной электронтранспортной цепи, так как стехиометрия взаимодействия комплексов определена лишь в среднем и может меняться при изменении внешних условий. Если регулируемая условиями внешней среды латеральная асимметрия в распределении комплексов переносчиков достаточно хорошо установлена для фотосинтетического аппарата высших растений, то, несомненно, аналогичные процессы регулирования пространственной обособленности отдельных реакций могут происходить и у фотосинтезрфующих бактерий и митохондрий. Динамическая организация электронного транспорта, проявляющаяся в процессах агрегации— дезагрегации как отдельных переносчиков электронов с комплексами, так и самих комплексов, приводит к быстрому и высокоэффективному переносу электронов (внутри комплексов), увеличивает надежность функционирования цепи переноса электронов, обеспечивая возможность замены вышедших из строя элементов, а также их встраивание в процессе б иогенеза и, кроме того, обеспечивает возможность эффективных способов регуляции транспорта электронов за счет изменения степени агрегации комплексов, их пространственной обособленности и взаимного положения в мембране. Асимметричная латеральная и трансмембранная организация комплексов в мембране может направленно регулироваться такими факторами, как липидный состав мембраны, соотношение липид/белок, микровязкость, энзиматическая модификация белков, ионный состав среды и др. [c.286]

    Мембранология — современная, стремительно развивающаяся междисциплинарная область естественных наук, находящаяся на стыке биофизики, биохимии, молекулярной биологии, иммунологии, физиологии, генетики, физической и коллоидной химии и др. Она изучает состав, структуру, свойства, функции, локализацию компонентов биологических мембран, их молекулярную и динамическую организацию, особенности межмоле-кулярных взаимодействий и фазовые переходы липидов и белков в мембране, транспорт веществ через мембраны, участие биомембран в осуществлении и регулировании метаболических процессов в клетке, механизмы действия различных физико-химических факторов на мембранные системы и другие вопросы, связанные с исследованием состояния компонентов биомембран и отдельных клеток. [c.7]

    ПОЛ представляет собой один из важнейших универсальных процессов повреждения мембранных систем, изменяющий химический состав, физические параметры, ультраструктзфную организацию и функциональные характеристики биомембран. ПОЛ вызывает обновление липидного состава мембран вследствие удаления легко окисляющихся липидов — фосфатидилсерина, фосфатидилэтаноламина, фосфатидилинозитола. При ПОЛ возрастает скорость процессов флип-флоп -переходов. ПОЛ приводит к увеличению вязкости мембран в результате уменьшения содержания жидких липвдов в бислойных участках, появления поперечных межмолекулярных сшивок и возрастания доли упорядоченных липидов с ограниченной подвижностью. Отрицательный заряд на поверхности мембран увеличивается, что обусловлено вторичными продуктами ПОЛ (эпоксиды, кетоны, малоновый диальдегид и др.), содержащими карбонильные и карбоксильные группы. Мембраны эритроцитов, митохондрий, саркоплазматического ретикулума, лизосом становятся проницаемыми для различных ионов, неэлектролитов, макромолекул. Изменяются свойства мембранных белков Са -АТФазы, Ка , К - АТФазы, родопсина, фосфолипазы. Эти функциональные проявления ПОЛ определяют формирование многих патологических состояний организма, возникающих при неблагоприятных условиях и повреждающих воздействиях. [c.106]

    Для понимания молекулярной организации мембраны миелина критическим является изучение коротко- и длиннорадиусных взаимодействий между белками и липидами. Несомненно, что изменение структуры белков или липидов ведет к изменению такого рода взаимодействий и приводит к нестабильности миелина, в том числе к демиелинизации. [c.119]

    Обмен жиров и образование полиэнов. Жирные кислоты и жиры имеют наиболее близкое отнощение к основному обмену, так как являются структурными элементами клетки, обеспечивающими сохранение раздела сред почти во всех мембранных клеточных структурах (клеточные мембраны, митохондрии, аппарат Гольджи и т. д.). Видимо, липиды, а в особенности стероиды и фосфолипиды, являются не только запасными веществами, хотя и эту роль они тоже играют, а составляют компоненты структурных элементов клетки, обеспечивая определенные механизмы проницаемости, последовательность биохимических реакций и поддержку определенной структурной организации клеточных элементов. Особое значение они имеют для функционирования многочисленных мембранно-связанных энзимов. [c.75]

    Структурная организация биологических мембран достаточо подробно описана в предшествующих книгах этой серии. В последнее время активно обсуждается доменная модель мембраны, основу которой составляет жидкокристаллический липидный бислой с погруженными в него скоплениями, пластинками и платформами, не связанными жестко друг с другом (рис. 11). Согласно этой модели (М. Jain, Н. Whitte, 1977) поверхность мембраны может быть представлена в виде ряда относительно стабильных (ригидных) платформ, способных передвигаться друг относительно друга. Такие упорядоченные платформы (домены) могут состоять из одного или разнородных компонентов (например, белков и липидов), причем они разделены полями относительно жидких липидов или другими разупорядоченными участками мембранного бислоя. Как упорядоченные (ригидные), так и разупорядоченные участки обладают характерными для [c.16]

    В основе молекулярной организации мембран лежит способность липидов образовывать прочные мономолекулярные слои. Почти 50 лет назад было высказано предположение, что в основе мембран лежит бимолекулярный слой липидов. С тех пор было предложено множество различных моделей структуры мембраны, что отражено на рис. 9. Все предложенные модели ос-тавлязот неоспоримой белково-липидную природу мембран. Несмотря на большое число вариантов, представленные модели могут быть сведены к трем основным типам. [c.77]

    Мембранные образования растительной клетки содержат в среднем около половины сухой массы клетки. Хотя различные мембраны состоят из близких по природе материалов (все содержат липиды и белки) и даже внешне похожи, но это сходство проявляется лишь в общих чертах. Различия обусловлены неодинаковым соотношением компонентов мембран, структурной организацией последних и их взаиморасположением. йлмобилизация ферментных ассоциатов на мембране дает возможность не только ускорить течение каталитических реакций, но и ориентировать перемещение субстратов в пространстве, т.е. придать ферментативному процессу векториальность по отношению к мембране. Мембраны разделяют объем клетки на множество обособленных пространств - компартментов. Но последние разделены не наглухо, а, напротив, мембраны помогают интегрировать клеточный метаболизм в целом. [c.15]

    В 1972 г. Джонатан Сингер и Гарт Николсон (J. Singer, G. Ni olson) предложили жид-костно-мозаичную модель, объясняющую в общих чертах организацию биологических мембран. Согласно этой модели, мембраны представляют собой двумерные растворы определенным образом ориентированных глобулярных белков и липидов (рис. 10.28). В пользу предложенной модели свидетельствует большое количество экспериментальных данных. Основные положения жидкостно-мозаичной модели сводятся к следующему. [c.218]


Смотреть страницы где упоминается термин ОРГАНИЗАЦИЯ ЛИПИДОВ В МЕМБРАНЕ: [c.88]    [c.303]    [c.32]    [c.102]    [c.17]    [c.16]    [c.322]   
Смотреть главы в:

Нейрохимия -> ОРГАНИЗАЦИЯ ЛИПИДОВ В МЕМБРАНЕ




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте